

Universidade Federal de Campina Grande
Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Informática

Desenvolvimento de Software Guiado por
Testes de Aceitação Usando EasyAccept

Osório Lopes Abath Neto

Campina Grande, Paraíba, Brasil
Agosto de 2007

Universidade Federal de Campina Grande
Centro de Engenharia Elétrica e Informática

Coordenação de Pós-Graduação em Informática

Desenvolvimento de Software Guiado por
Testes de Aceitação Usando EasyAccept

Osório Lopes Abath Neto

Dissertação submetida à Coordenação do Curso de Pós-
Graduação em Ciência da Computação do Centro de
Engenharia Elétrica e Informática da Universidade
Federal de Campina Grande, como parte dos requisitos
necessários para obtenção do grau de Mestre em Ciência
da Computação.

Área de Concentração: Ciência da Computação
Linha de Pesquisa: Engenharia de Software

Jacques Philippe Sauvé

(orientador)

Campina Grande, Paraíba, Brasil
Agosto de 2007

A119d

 2007 Abath Neto, Osório Lopes.

 Desenvolvimento de software guiado por testes de aceitação usando

EasyAccept/Osório Lopes Abath Neto. ─ Campina Grande: 2007.

 116f.: il

 Dissertação (Mestrado em Ciência da Computação) – Universidade

Federal de Campina Grande, Centro de Engenharia Elétrica e Informática.

 Referências.

 Orientador: Dr. Jacques Philippe Sauvé.

 1. Engenharia de Software. 2. Testes de Aceitação. 3. Acceptance Test-

Driven Development. I. Título.

 CDU 004.41(043)

Resumo

O Desenvolvimento de Software Guiado por Testes de Aceitação – Acceptance Test Driven

Development (ATDD) – é uma metodologia de desenvolvimento de software ágil que

apresenta vários benefícios, que incluem confiança no software em desenvolvimento,

sincronização automática entre análise e código, redução de problemas de comunicação no

projeto e foco dos desenvolvedores nos requisitos do cliente. É particularmente adequada para

projetos terceirizados e para ensinar desenvolvimento de software a estudantes de Ciência da

Computação. Entretanto, como é uma metodologia nova, ainda falta para ela uma cobertura

adequada na literatura. Além disso, a área de padrões para ATDD ainda precisa ser iniciada.

Esta dissertação envolve a realização de um estudo investigativo sobre melhores práticas e

padrões para ATDD, a definição de como aplicar a metodologia sob o ponto de vista de um

processo de desenvolvimento de software, e um resumo da experiência adquirida com ensino

de desenvolvimento de software utilizando ATDD. Como resultado da realização destas

atividades, foi escrito um texto introdutório sobre ATDD, que esperamos sirva não só para

que novatos aproveitem o máximo da metodologia, mas também para divulgar seus

benefícios. Os exemplos do texto usam EasyAccept, uma ferramenta de testes de aceitação

com scripts, como meio de exposição da metodologia.

Abstract

Acceptance Test Driven Development (ATDD) is an emerging agile methodology to develop

software which has a number of advantages, including confidence in the software being

developed, automated synchronization between analysis and code, reduction of project

communication problems and developer focus on client requirements. It is particularly suited

to outsource projects and to teach software development to Computer Science students. As it

is new, however, there is still a lack of proper coverage of this methodology in the literature.

Furthermore, the area of patterns for ATDD still needs to be started. This dissertation

involves performing an investigative study on best practices and patterns for ATDD, defining

the application of the methodology with a software development process point of view and

summarizing gathered experience with ATDD as a means of teaching software development.

The result of these activities was an introductory text on ATDD, which we hope will serve not

only to help newcomers yield more from the methodology, but also to divulge its benefits.

The examples in the text use EasyAccept, a scripted acceptance testing tool, as a means of

exposing the methodology.

Agradecimentos

Ao meu orientador Jacques Sauvé, pela reiterada confiança em mim, por me ter aberto as

portas e me conduzido nos caminhos que tornaram esse trabalho possível.

A meus queridos tios Lucas e Marinete, pelo segundo lar de que me deixaram fazer parte por

tantos anos e do qual recordarei com muito carinho para sempre. Espero poder retribuir-lhes

algum dia tudo aquilo que recebi de coração aberto.

A Walfredo Cirne, meu co-orientador durante grande parcela do programa, pelos importantes

comentários e sugestões, e por ter me acolhido com tanta amizade no LSD.

Às amigas Roberta e Ayla, que ajudaram a dar forma a idéias que estão contidas nesse

trabalho.

A todos os colegas do DSC e do LSD, pela agradável convivência durante minha

permanência em Campina Grande. Em particular, gostaria de agradecer de forma especial

àqueles que foram mais amigos em momentos diferentes: Alexandre e Eloi na antiga sala da

CHESF; os dois Rodrigos e Filipe na sala do Bottom Line; Raquel, Ana, Lívia e Iury na Dona

Bica do LSD; Lauro, nunca na mesma sala, mas sempre presente.

A Ana e Vera, meu muito obrigado pela ajuda de sempre e também meu pedido de desculpas

por ser um mestrando tão trabalhoso.

Finalmente, gostaria de agradecer a meus pais e minha família, que me apoiaram em todos os

sentidos nesse trabalho, mesmo sem saber exatamente o que estive fazendo; a minha irmã

Roberta, iniciadora dessa idéia; e a meus amigos que silenciosamente me sugestionam a tomar

os caminhos corretos, segundo aquilo que combinamos antes de eu chegar aqui.

Sumário

Resumo .. iv

Abstract .. v

Agradecimentos .. vi

Sumário .. vii

Índice de Figuras .. ix

Índice de Tabelas .. ix

Lista de Abreviações ... ix

1 – Introdução .. 1

2 – Executable Analysis Rationale .. 3
Why is software so hard to build? .. 3
Using Client-Readable Acceptance Tests As Executable Analysis Artifacts .. 5
Acceptance Testing Tools .. 6
Using Acceptante Tests to Test Existing Software .. 7
Using Acceptance Tests to Drive Software Development ... 7
The Need for Acceptance Testing Patterns .. 7

3 – A Programming Session with EasyAccept .. 8
EasyAccept‟s Quick Install .. 8
A Programming Session .. 9

4 – ATDD: Driving Development with Acceptance Tests .. 34
Project Planning ... 35
User story list definition ... 36
Architectural design ... 37
Non-functional requirement list definition ... 37
Creation of a release plan (Long-term planning) ... 38
Iterations .. 39
Defining a script language ... 39
Creating Acceptance Tests ... 40
Implementation based on the acceptance tests ... 41
Maintenance activities ... 42
Refactoring .. 42
Test Maintenance ... 43

Section 2 – Acceptance Testing Patterns .. 44

Creating a Script Language .. 48

Test Flow .. 53
Pattern outline .. 55

Creator and Destroyer ... 56
Pattern outline .. 58

Command Errors ... 60
Pattern outline .. 61

Boundary Checker ... 62
Pattern outline .. 63

Table Tester .. 64
Pattern outline .. 67

Template Tester .. 68
Pattern outline .. 69

Persistence Tester .. 70
Pattern outline .. 71

Business Object Reference .. 72
Pattern outline .. 73

Only Business Objects ... 74
Pattern outline .. 75

Client Assertion .. 76
Pattern outline .. 77

Commentor ... 79
Pattern outline .. 81

Summarizer .. 82
Pattern outline .. 83

Single Tester .. 85
Pattern outline .. 86

Template Generator ... 87
Pattern outline .. 89

Appendix I – EasyAccept’s Manual .. 90
Requirements ... 90
Basic Decisions .. 90
Internal Commands .. 90
Examples .. 91
The language .. 93
Instructions for the Programmer .. 96

Appendix II – Acceptance Tests and Unit Tests ... 98

Appendix III – Teaching ATDD with EasyAccept ... 107
How to create the tests ... 110
How to assign the projects ... 110
How to grade students .. 111

6 – Conclusão ... 112

6.1 – Conclusões .. 112

6.2 – Contribuições ... 113

6.3 – Limitações ... 113

6.4 – Trabalhos Futuros ... 113

7 – Referências ... 115

Índice de Figuras

Figure 3.1 – Outline of how EasyAccept works ... 8

Figure 4.1 – ATDD Process ... 35

Figure 5.1 – Overview of acceptance testing patterns ... 45

Índice de Tabelas

Table 4.1 – Project Responsibilities .. 35

Table 5.1 – Monopoly Board Positions ... 46

Table III.1 – Correctness of sample projects before using EasyAccept 108

Table III.2 – Correctness of sample projects after using EasyAccept 109

Lista de Abreviações

ATDD – Acceptance Test-Driven Development

FiT – Framework for Integrated Testing

IDE – Integrated Development Environment

TDD – Test-Driven Development

XP – Extreme Programming

 1

1 – Introdução

O desenvolvimento de software guiado por testes de aceitação – Acceptance Test-Driven

Development (ATDD) – é uma metodologia que surgiu recentemente [Beck03, Reppert] e

tem se revelado bastante promissora dentro da Engenharia de Software [Crispin, Andersson,

Finster].

Ela consiste em usar testes de aceitação
1
 como os principais artefatos para guiar o

desenvolvimento do software, através de dois pilares. O primeiro deles, chamado análise

executável, consiste em criar testes de aceitação durante a atividade de análise diretamente a

partir da captura de requisitos e regras de negócio definidas pelo cliente. Os testes podem ser

executados automaticamente através de ferramentas, servindo para verificar a qualquer

momento se o sistema em desenvolvimento funciona como esperado. O segundo pilar

consiste em usar técnicas baseadas em Test-Driven Development (TDD) [Beck03], de forma

que o feedback da execução sistemática e freqüente dos testes de aceitação gerados na análise

garanta a correção do sistema à medida em que é criado.

Kent Beck [Beck03] já havia chamado atenção para a importância dos testes de aceitação no

contexto de processos ágeis e para as potencialidades desses testes como guias de

desenvolvimento de software. Entretanto, a concretização da metodologia só se tornou

possível a partir do surgimento de ferramentas fáceis de usar que possibilitassem criar testes

de aceitação em um formato entendível pelo cliente. Tais ferramentas incluem o Framework

for Integrated Testing – FiT [Cunningham, Martin, ZiBreve], que usa tabelas de entrada e

saída esperadas pelo programa, e diversas ferramentas que usam arquivos de script com uma

linguagem próxima à do cliente, que incluem o EasyAccept, entre outras [EasyAccept,

Sauve06, Text, Exactor, Jameleon, Martin].

A metodologia ATDD é recente e envolve questões peculiares não presentes em outras

metodologias de desenvolvimento. Por exemplo, as conseqüências da necessidade de que os

artefatos sejam entendíveis pelo cliente – ator que geralmente tem pouco conhecimento

técnico de programação. Há uma falta na literatura de textos explorando essas questões. Além

disso, a aplicação da metodologia ATDD envolve uma curva de aprendizagem que pode ser

minimizada caso haja uma catalogação de melhores práticas, padrões e resumo de experiência

com a sua utilização. Como criar testes de aceitação expressíveis e entendíveis pelo cliente?

Como torná-los abrangentes, precisos, e ao mesmo tempo fáceis de manter, expandir,

organizar? De que forma introduzir o cliente no processo de criação dos testes de aceitação?

Como ensinar a criar e usar testes de aceitação? Como integrar testes de aceitação e testes de

unidade? Há padrões para esses problemas?

Tentamos responder essas questões através de um trabalho investigativo e observacional que

envolveu a participação em discussões nas comunidades que usam ATDD e comunidades de

1
 Testes de aceitação, também chamados testes funcionais, são testes de sistema black-box

usados para verificar uma funcionalidade global do sistema; são testes que fazem sentido para

o cliente e que podem ser usados por este para definir se o sistema será “aceito” ou

“rejeitado” – esta é a origem do termo.

 2

padrões de software; experiência com a aplicação da metodologia em projetos de

desenvolvimento de software; análise de massas de testes de aceitação gerados por equipes de

desenvolvimento que aplicaram a metodologia; e finalmente experiência com o ensino da

metodologia a alunos de graduação em Ciência da Computação.

Esse trabalho é relevante no sentido em que atua para avançar o estado da arte da metodologia

ATDD e promover sua divulgação e adoção. Como resultado da investigação, foi dado início

à catalogação de padrões e melhores práticas para a metodologia, gerando um conjunto inicial

de artefatos que resume a experiência que nós e outros tivemos com a metodologia. Esse

conjunto inicial serve como um repositório colaborativo que tende a crescer ao longo do

tempo, e se torna importante tanto para aqueles que desejam adotar a metodologia ATDD

quanto para aqueles que já a utilizam.

Como resultado adicional da investigação, incluímos neste trabalho um exemplo de aplicação

da metodologia no contexto de um processo de desenvolvimento ágil, além de um resumo de

nossa experiência no ensino da metodologia. Estes artefatos servem como guias para

participantes de um projeto de desenvolvimento de software e professores universitários,

respectivamente. A dissertação, além de servir o propósito adicional de introduzir neófitos à

metodologia ATDD, resume todo o conhecimento produzido como resultado do trabalho

investigativo e, tendo boa parte de seu conteúdo sido escrito em inglês, funciona como

instrumento de mais ampla divulgação da metodologia.

Esta dissertação está estruturada em duas seções. Na primeira seção, são apresentados os

fundamentos da metodologia ATDD, da seguinte forma: o capítulo 2 expõe os fundamentos

da análise executável, o primeiro pilar do ATDD, incluindo uma discussão histórica sobre

Engenharia de Software e quais os problemas que a análise executável se propõe a resolver.

No capítulo 3, a metodologia é apresentada em detalhes através de um exemplo completo:

todo o ciclo de desenvolvimento de um projeto hipotético para um software simples é

mostrado, desde a análise, passando pela criação dos testes, até o código final escrito. O

capítulo 4 define como o ATDD pode ser usado no contexto de um processo de

desenvolvimento baseado em Extreme Programming (XP) [Beck99], apresentando que

adaptações precisam ser realizadas no processo para acomodar as novas técnicas e a

participação do cliente.

Na segunda seção, é feita a discussão dos padrões levantados para a metodologia. A seção se

inicia com uma discussão geral sobre padrões, seguida da exposição de como se deve criar

uma linguagem de script, o vocabulário que define os comandos que serão usados nos scripts

de teste. O restante da seção discute cada um dos padrões de criação e organização de testes

de aceitação, além de padrões de aplicação dos testes dentro da metodologia ATDD.

Ao final da dissertação, há três apêndices. O primeiro deles consiste em um manual de

referência da ferramenta EasyAccept, que foi usada nos exemplos ao longo do texto. O

segundo apêndice trata em mais detalhes, com exemplos adicionais, a questão da sincronia

entre testes de aceitação e de unidade dentro da metodologia ATDD, e serve como

complemento ao capítulo 3. O terceiro apêndice resume a experiência que tivemos no ensino

da metodologia a alunos de Ciência da Computação.

Após os apêndices, encontra-se a conclusão da dissertação, incluindo a discussão das suas

limitações e contribuições, bem como o levantamento de trabalhos futuros.

 3

2 – Executable Analysis Rationale

Why is software so hard to build?

Unlike most other engineering disciplines, which have well-established processes proven to

be effective for (in some cases thousands of) years, Software Engineering is relatively new,

dating back to the 1960's as a blooming discipline into which people started to give their first

thoughts. Although it very much resembles other engineering fields in the goals of applying

basic science into useful means of helping peoples' lives, Software Engineering has quite a

few unique characteristics that give rise to specific, hard-to-address issues.

At least two practical considerations affecting software development set it apart from other

engineering activities. The first is that software requirements change a lot during

development, even after production has started. This occurs because the client doesn‟t always

have a precise definition of what he
2
 wants the software to do at the beginning of the project –

at an initial stage, requirements can be vague and unclear. Even if he knows what he wants

and expresses it correctly, it may later be discovered that it isn‟t what he needs. That‟s why

clients need a concrete object over which to discuss – partially working software. Working

with the program will mature his understanding of the details of the solution he needs.

The other practical consideration is that it is widely believed that software is cheap to build

and change, as compared to building bridges, houses, cars, tanks, or airplanes. It doesn‟t

require production lines or expensive raw materials and machinery, only a computer with a

compiler and source code. This has served to further disseminate in the field, especially in the

executive circle, the false idea that there is little or no cost in fooling around with

requirements during software development.

When you want to build a house, an architect or civil engineer will draw a plan depicting it

based on your requirements. There will be some discussion rounds to refine details, and that's

it, you have a final plan. After construction has started, only minor, if any, modifications can

be made to the house. When the house is complete, or during the course of its construction,

the progress and compliance of the resulting building with its requirements can be

immediately verified by comparing it with the plan.

That process typically doesn't work with software, unless it be for very simple and small

projects. Due to the complexity and abstractness involved with software creation, charts and

diagrams alone aren't enough for clients and developers to reach a common understanding

early on in the project, because of the above-mentioned uncertainty. Moreover, software is

hard to verify for compliance with requirements. You see the software complete, you check

the diagrams ... Does the software do what the diagram says? The sheer amount of detail

involved in business rules and requirements demands an automated means of doing the

verification.

2
 We use the term “he”, “his”, etc. as gender-neutral pronouns, unfortunately still missing in

the English language.

 4

There is one further problem with software charts and diagrams, as opposed to a house plan,

for example. In software development, as in any other human endeavor involving many

people, communication plays an essential role and is a common source of errors. Everyone

involved in the project must keep focused on the same goals, and thus everyone must

understand exactly what must be done according to what the client wants. What is meant by a

house construction plan is taken for granted, as it visually displays the measures, the spaces

and details the final house will have. With typical software diagrams, however, despite the

greater precision and rigor they compel (as compared, for example, to mere textual

descriptions), there still seems to be plenty of room for misunderstanding due to multiple

views and interpretations.

The breakdown stems from gaps in the communication between various actors involved in

software development:

 Clients may not correctly express what they want (or, as stated above, may not even know

what they want concretely);

 Analysts may not completely understand what the client wants even if they do express it

well;

 The translation of requirements and rules into diagrams may not be effective;

 Clients may fail to understand the diagrams (as they require technical background to be

understood) and misleadingly approve them;

 Developers may overlook details or interpret the artifacts in a wrong way, resulting in

bugs, unmet requirements and feature creep;

In order to reduce the effect of such communication gaps in software development, the

direction that has been historically given to software development was that of reducing more

and more the separation of roles between analysts and programmers. Analysts and

programmers had formerly well-defined non-overlapping roles. Analysts talked to the clients

to capture requirements and handed them to programmers, who created working software.

People concluded that blurring the two roles into a single common “developer” denomination,

with mixed responsibilities, allowed less information to be transferred and thus less

miscommunication would arise. However, it is hard to find professionals that excel in both

roles. The profile of a typical analyst is that of an expansive, talkative professional specialized

in negotiating with clients and getting the most out his communication skills to capture

software requirements. On the other hand, programmers tend to be technically-oriented, more

comfortable with machines than with people.

Another solution to reduce communication problems would be to find a method that can

integrate the language of clients, analysts, developers and testers using a non-ambiguous,

verifiable, automatable, expressible and readable artifact:

 Non-ambiguous because there mustn't be multiple interpretations of what the artifact

represents;

 Verifiable because the artifact must correctly reflect software characteristics and behavior

the client wants, so there must be a way to check for such correctness;

 Automatable because it is not feasible to do a complete verification of software manually,

given its complexity and the frequency with which testing must be done. Furthermore,

with the possibility of knowing on the fly if the code they are writing is correct (through

the execution of a full set of automated tests), developers lose the fear of changing and

refactoring their code, improving its quality;

 Expressible because there mustn't be requirements or rules that can't be written or that are

too difficult to write with the artifact;

 5

 Readable because the client, a non-technical actor involved in the process, must be able to

understand, discuss and approve the content of the artifact.

We call such a method "executable analysis". The output of the analysis activity - which

involves requirements capture and processing, elicitation of business rules, etc. - is executable

analysis artifacts that can be used to test and verify software in an automated way. If you

make your analysis executable, you can address all those issues discussed previously.

Furthermore, as executable analysis allows requirements to be captured unequivocally, an

efficient separation of roles between analysts and developers can be finally established.

Analysts can capture requirements efficiently and translate them into executable

requirements. Programmers need not have as much direct contact with the client as analysts

and simply create the code that meets the executable requirements. Maybe software

development will revisit its roots?

The stage is set for this to happen, because executable analysis has entered the realm of

feasibility with the emergence of artifacts that enable it. But then, what is the ideal executable

analysis artifact?

Using Client-Readable Acceptance Tests As Executable Analysis
Artifacts

Examining the possible artifacts one could use to represent requirements, on the one extreme

of the range of possibilities are formal, mathematical expressions that describe requirements

in a rigorous way. On the other extreme are loose textual descriptions written in the client's

natural language. Textual descriptions are the most expressible and readable of all possible

artifacts, but are also highly ambiguous, hard to verify given the current state of the field of

natural language processing, and not at all automatable. On the other hand, formal

mathematical descriptions are highly precise, verifiable and automatable, but lack readability

and especially expressiveness. There is clearly a tradeoff to be explored between client-side

virtues of the artifact (expressiveness and readability) and development-side needs

(nonambiguity, verifiability, automatability). A compromise must be found between the two

sides.

Client-readable acceptance tests can serve well as this compromise.

First, let's state what acceptance tests are in isolation.

Per se, acceptance tests – sometimes also called functional tests – are black-box system-level

tests. While not necessarily readable by the client, they are used by him to check whether or

not the software does what it should. That's the origin of the name: the client either "accepts"

or "rejects" the software produced depending on the test results. Such tests involve functions

that make sense to the client. For him, it doesn't matter how such functions under test are

implemented (tests are black-box).

By nature, acceptance tests comply with the developer-side requirements for an executable

analysis artifact (non-ambiguous, verifiable and automatable). To comply with the remaining

requirements (expressiveness, readability), acceptance tests should be written in a format that

clients can easily grasp. That makes acceptance tests client-readable: in addition to

automating software testing, their representation can be read, understood and thus discussed

with the client. To make acceptance tests client-readable implies that such tests mustn't be

 6

written using programming language code, or involve programming entities like classes,

objects, data structures, etc., because a regular client doesn't understand these concepts.

Now, let's state what client-readable acceptance tests are not.

They are not tests for the user interface; even though most of the acceptance testing tools

used in the industry involve the client interacting with a user interface to record his activities,

the point of acceptance tests is not testing the user interface. Rather, they are used to test the

underlying business logic of the program under test (that is, the rules, the calculations, the

workflow of actions - in summary, functional requirements for the software), even if, to do so,

they access user interface elements like buttons and drop-down menus to capture useful client

examples. We don‟t argue that one should not test the user interface, though; quite on the

contrary, the final “acceptance” of a program includes the client‟s satisfaction with the user

interface, and testing it is an essential step toward this satisfaction. However, we believe

testing the user interface is a separate concern from testing the business logic.

They are not tests for low-level software code; even though one could use an acceptance

testing tool to test specific low-level pieces of software code, like the inner workings of a data

structure or class, that generally is not a client concern (unless they involve a client's business

rule, in which case he might want to discuss the situation), so that shouldn't be incorporated in

the test suite as an acceptance test. Rather, programmers should write those tests as unit tests

to help them gain confidence in the code they write.

Acceptance Testing Tools

In the last few years, a number of tools have emerged to help create and run client-readable

acceptance tests. Any of those tools, as long as they really deal with client-readable

acceptance tests, can be used to yield the benefits of executable analysis.

The most widely known of these tools is FiT (Framework for Integrated Testing), created by

Ward Cunningham and others. It uses acceptance tests represented as tables enclosed in

HTML files. The rationale behind this approach is that tables are easily understood by clients

and can be created in widely available spreadsheet editors. Upon running FiT, the tables are

linked to the program being tested using hookup code called Fixture code. Fixtures are

provided by developers and are composed of attributes and methods that correspond exactly

to the column titles in the test tables.

Most other tools use a text-driven approach, in which the tests are described using a format

that resembles natural language - mostly, a sequence of sentences with verbs and nouns that

serve as commands. Commands are then matched to methods in the hookup code that allow

the program under test to be accessed.

Throughout this text, we will use examples of acceptance tests written in the format of

EasyAccept, a text-driven acceptance testing tool created by Sauvé et al. EasyAccept takes

acceptance tests enclosed in plain text files. Tests are expressed as a script consisting of a

sequence of lines, most containing a command to access the business logic of the program

being tested (there are also comments, for example). Clients and developers jointly define the

set of commands that will be used to express the tests. To run the tests, you give EasyAccept

the text files containing the tests, and an “entry point” to the program under test containing

methods that match the commands defined. EasyAccept then runs the script line by line and

reports back to the user the results of the tests executed.

 7

Using Acceptante Tests to Test Existing Software

With tools like EasyAccept or FiT, one can easily probe existing software with a Façade or

Fixtures, which do not change existing software code, and create useful acceptance tests for

current functionality as well as for features that will be added. As the mass of tests evolves,

developers not only gain more and more confidence that the new functionalities work, but

also lose the fear of changing and refactoring existing code.

Using Acceptance Tests to Drive Software Development

An even more powerful application of client-readable acceptance tests is to use Acceptance

Test-Driven Development (ATDD), an approach that yields the full range of benefits that

executable analysis has to offer. In short, it consists in developing software from its inception

driven by acceptance tests, in a write-tests-first approach.

Chapter 3 outlines a simple example of how this works with EasyAccept, and chapter 4

discusses ATDD from a software development process point of view.

The Need for Acceptance Testing Patterns

Patterns are effective solutions to solve common problems in a given field of application.

Although originally conceived by Christopher Alexander, an architect, they have been mostly

influential in the IT industry. In software engineering, the patterns movement (to find and

spread patterns to solve software development problems) has grown with the popularity of

design patterns. Singleton, Factory Method and Façade have become common words for

developers in the software industry. Design patterns have even been integrated into the

Computer Science curriculum of top universities.

Patterns have short, suggestive names to help convey and memorize the solution they enclose.

Furthermore, they provide a common vocabulary for discussing solutions for the problems.

They emerge from the observation that a certain recurrent problem can be solved effectively

with a simple, but not always obvious solution. The identification and propagation of patterns

is useful because of the common vocabulary and also to lead inexperienced people away from

cumbersome solutions.

As the number of people using client-readable acceptance tests grows, the need and search for

related patterns begin. What is the best way to create acceptance tests? How to effectively

organize the tests, so that you boost communication through the tests? How to make the best

use of tests in software development? This text provides an initial set of patterns that we hope

will evolve with time.

 8

3 – A Programming Session with EasyAccept

In this chapter, we illustrate how an approach that uses client-readable acceptance tests to

develop software works in practice through a programming session. The example uses

EasyAccept, a tool to create and run acceptance tests in Java in an easy way. Throughout this

text, we use several examples of acceptance tests created in the EasyAccept format. So,

before we begin, let‟s explain how the tool works. If you need additional details, including

installation instructions, please refer to appendix I – EasyAccept manual.

An outline of what EasyAccept does can be found in Figure 3.1 below:

Figure 3.1 – Outline of how EasyAccept works.

EasyAccept takes a number of text files in which you have created the tests and a Façade,

which is a simplified interface that accesses the business logic of the program under test.

Façades are created by programmers to comply with the script language chosen to write the

tests with. EasyAccept then runs the tests line by line, communicating with the program's

business logic via the Façade, and reports any divergences between expected and actual

results of the program's execution.

For programmers, EasyAccept is simply a script interpreter that uses Java reflection to

associate commands in the scripts to methods available in the Façade.

EasyAccept’s Quick Install

The overhead to install and start using EasyAccept is minimal. First of all, you need to

download the tool from its web page, http://easyaccept.org. EasyAccept is enclosed in a zip

file, easyaccept.zip. Currently, EasyAccept only works with Java programs, but

compatilibility will increase in the near future. Unzip the file into a folder of your preference,

which will typically be the lib folder of the Java project you will develop. No matter which

http://easyaccept.org/

 9

folder you choose, make sure easyaccept.jar is included in the CLASSPATH, so that

EasyAccept can be found by the Java compiler.

EasyAccept is run from the command line (or within an IDE or ant) with the following

syntax:

java easyaccept.EasyAccept <FacadeName> <test file 1>.. <test file n>

Instead of specifying multiple test files, a folder that includes the test files can be referenced.

In that case, EasyAccept runs all files it finds in the folder structure.

Examples of EasyAccept usage:

java easyaccept.EasyAccept ApplicationFacade us1.txt

java easyaccept.EasyAccept ApplicationFacade us1.txt us2.txt us3.txt

java easyaccept.EasyAccept ApplicationFacade acctests

(wherer acctests is a folder that contains many acceptance test files)

A Programming Session

In order to illustrate how EasyAccept is used, we have chosen to describe a programming

session in which a client and a developer work together to create a simple program, a poll

manager. This program, albeit unpretentious, has a good enough size to serve the aim of

showing how the approach works.

Poll Program Outline

Alice is a client who wants a simple poll program to be created. With this program, Alice, an

outspoken and highly sociable person, wants to create polls to know even more about the

opinions of her thousands of friends. A typical poll consists of a question and a number of

answer choices. The program users – Alice‟s friends, henceforth called voters – pick one

among the set of possible answers for any given poll. Among the features Alice wants the

program to have are the following: management of multiple polls (create, read, update, delete

or CRUD operations), generation of reports of the poll results, voter authentication with

passwords, and so on.

Although Alice has no trouble operating computers, she has no programming background

whatsoever, so she hired Bob to do the job. He is the software developer who will materialize

Alice‟s ideas. An experienced but open-minded developer, Bob had already realized the

advantages of adopting test-driven development coupled with acceptance tests (Acceptance

Test-Driven Development, or ATDD) to create software with focus and confidence. Since

Alice is relatively “available” as a client, i.e., she can be easily contacted and can give prompt

feedback over any doubt Bob might have regarding requirements, Bob suggested the usage of

an ATDD approach to develop the poll program.

Alice thought of many features she wants her poll program to have. However, Bob asked her

to choose the minimum functionality she needs implemented in the first iteration of

development. At the end of this iteration, Bob will give her back fully working software – for

 10

the set of features chosen. After giving the issue some thought, Alice comes up with the

following list of user stories
3
 for the first iteration of the poll program:

User story 1 – Let the user create a poll. The user must provide one poll question and at least

2 answer choices.

User story 2 – Let the user cast a vote for a poll. He chooses a poll and one of the possible

answers.

User story 3 – Generate a report with the results of a poll, including the total number of votes

for each option and the corresponding percentage.

Knowing the user stories he needs to implement, Bob chooses the first one to tackle. He tells

Alice that, before he can write any code, some acceptance tests must be created. Such tests

aren't meant to test the user interface, which she may well consider later (command line,

windows, buttons, etc.), but rather they serve to test the program's business logic, that is, the

rules, requirements and processes that go hidden in the inner workings of the program and

often are taken for granted when people only test the user interface. Even though EasyAccept

can potentially be used to test a user interface (if you associate script commands with GUI

component operations, for example), the final acceptance of the interface by the user is mostly

visual and manual, consisting in the user operating the program and evaluating the “look and

feel” of the interface.

Bob now opens a text editor and creates a new file named poll-us1.txt. In this file, he'll write

some acceptance tests for the first user story. As an experienced EasyAccept test writer, he

won't bother calling a testing specialist to help him with the test creation, considering that this

is a simple program. For this first user story, he knows the testing pattern Creator will work

just fine to write good tests.

In order to write the tests, Bob needs to invent a number of commands to manipulate the

program under test. For the first user story, it is immediately apparent from the user story

description (based on the verbs Alice used to express the feature) that he will need a doer

command, createPoll, and some getters to check if the poll was created successfully. When

discussing how to create a script language, i.e., the set of commands or verbs you use to test

software, we'll talk about doers, getters, preparers and the process Bob used to choose the

right commands to express tests. For now, suffice to say that doers are actions a user of the

program would typically execute, and getters are commands to get information back from the

program under test. If you‟d like to have a peek at that now, feel free to refer to Creating a

Script Language in Section 2.

A First EasyAccept Test Script

Bob starts writing tests for the first user story. Its description states that a poll must have a

question and at least two answers. “But then”, Bob ponders, “don‟t polls have names?”. He

talks to Alice, explaining that should this information not be used in the program, the poll‟s

3
 User stories are an integral part of agile software development and Extreme Programming

(XP), in particular, on which ATDD is based. If you are not familiar with XP or need to

understand user stories in more depth, please refer to chapter 3, which details the ATDD

process.

 11

question itself could work as its name. Alice says she really won‟t need a poll‟s name. Using

the text editor, Bob then writes the following lines into poll-us1.txt:

 1 # user story 1 - Let the user create a poll. You need one poll question

 2 # (which is also the name of the poll) and at least 2 answer choices

 3 createPoll name="Do you like apples?" answers={yes,no}

The numbers put at the beginning of each line are there to easily identify lines when we refer

to them in the text. They aren‟t actually part of the script. Let‟s analyze these first lines Bob

has written. Notice the first two lines begin with a „#‟ character. Those are comment lines that

are ignored by EasyAccept when running the script. They serve the purpose of

communication among developers and clients and should be used extensively to explain and

clarify what the tests are doing. Bob included in the comments the user story description and

the clarification on polls‟ questions serving as names. Every time the developers have doubts

regarding how the software should work, they should ask the client for clarifications and

include them in the scripts as comments – see the patterns Client Assertion and Commentor,

in Section 2.

Line 3 consists of a single command, createPoll (the doer command invented by Bob). He

wants to create a poll with the name (which is also the question to be answered) “Do you like

apples?”, and two answer choices: “yes” or “no”. After writing these lines, Bob saves poll-

us1.txt. Before he can run the script poll-us1.txt with EasyAccept, though, he will need to

write a Façade for the (still nonexistent) program under test; otherwise he won‟t even be able

to call EasyAccept. If he tries, by typing in the command line (actually, a developer will

probably use this line within and IDE, or with a tool like ant):

java easyaccept.EasyAccept PollFacade poll-us1.txt

he gets back the following message:

Facade not found: PollFacade

The Façade also helps when Bob implements a user interface for Alice in the future. He can

use its methods to directly access the underlying program‟s business logic in a clean way,

separating user interface and business logic concerns automatically from the very beginning

of development. He then opens his Java editor, creates a class named PollFacade and simply

leaves it blank, as in the code below, just to enable EasyAccept to be run:

public class PollFacade { }

Now that PollFacade exists, Bob runs the script using EasyAccept for the first time, typing

again in the command line:

java easyaccept.EasyAccept PollFacade poll-us1.txt

That calls EasyAccept to test the poll program through the Façade PollFacade using the

script poll-us1.txt. The result of the run was, unsurprisingly, unsuccessful. This is the output

of EasyAccept:

 12

Test file poll-us1.txt: 1 errors:

Unkown command: createPoll name="Do you like apples?" answers={yes,no}

Command producing error: <createPoll name="Do you like apples?"

answers={yes,no}>

The reason for the error is that Bob still has a blank Façade. Every command found in the

script must correspond to a method in the Façade with a matching signature, but EasyAccept

couldn‟t find a corresponding method for createPoll. Bob then edits PollFacade to include

the method that matches createPoll. The resulting class follows:

public class PollFacade {
public void createPoll(String name, String answers) { }

}

Now Bob‟s Façade includes a method createPoll which takes a String as the name of the

poll and a String of answer choices for the poll, formatted as a comma-separated list of items

enclosed in curly brackets – “{“ and “}” (more on this syntax below).

Upon running EasyAccept once again, Bob gets the following message as a result:

Test file poll-us1.txt: 1 tests OK

He has just run his first successful EasyAccept script for Alice‟s poll program with no errors.

Bob could be happy if only the script were testing anything useful. The script must be

improved, so Bob adds a few more lines. For now, it simply consists in a poll being created;

but there must be tests to assess if the poll was created successfully. Just for the record, Bob is

applying the Creator pattern, which will be discussed in section 2. This is the point where

getters come into play. Those are new commands invented by Bob to create useful tests in the

script. The resulting poll-us1.txt follows:

 1 # user story 1 - Let the user create a poll. You need one question

 2 # (which is also the name of the poll) and at least 2 answer choices

 3 poll1=createPoll name="Do you like apples?" answers={yes,no}

 4 expect "Do you like apples?" getPollName poll=${poll1}

 5 expect "{yes,no}" getPollAnswers poll=${poll1}

Let‟s introduce a few new elements of an EasyAccept script that Bob has used to compose

these tests. First observe the new commands he has introduced – the getters getPollName and

getPollAnswers, which are combined in an EasyAccept script with the built-in command

expect. This command compares the result returned by a script (business logic) command to

an expected result declared in the script. When EasyAccept is run, if these two values don‟t

match, the user is informed of the divergence that was found. In line 4, Bob is stating that he

wants the program to return “Do you like apples?” as the result of a call to the getter

getPollName. Likewise, in line 5, the collection composed of the answers “yes” and “no”

must be returned when getPollAnswers is called (remember that the syntax Bob used to

declare the answers consists of comma-separated items enclosed in curly brackets). We‟ll see

in a few paragraphs the outcome of a failing expect-composed command, but let‟s first

explain one more feature found in this script.

Notice that line 3 now begins with the statement poll1=. This is an EasyAccept variable

assignment. Within a script, EasyAccept can take strings of characters returned by a

command and store them into variables declared by the test writer with the symbol “=”. These

 13

variables can be referenced in other points of the script using the symbol “$” followed by

curly brackets enclosing the variable name. In Bob‟s script, he declares the variable poll1 in

line 3 as receiving a string value returned by the command createPoll. The exact string

value returned by the command createPoll remains hidden to the test reader. This value

could be any string, but Bob‟s intention (as he also turns out to be the developer of the

program) is to provide a mechanism of attributing unique identifiers to business objects

created within the poll program and later accessing them. This is an acceptance test creation

pattern called Business Object Reference (BORef, for short). We will talk more about keys

and how they can be used to reference business objects when discussing how Bob

implemented the program. Additionally, a discussion of the BORef pattern can be found in

Section 2, should you want to take a look at it now.

After saving poll-us1.txt once again, Bob runs the tests again. As he hasn‟t implemented the

new methods in the Façade yet, EasyAccept shows 2 errors in the script:

Test file poll-us1.txt: 2 errors:

Line 4, file poll-us1.txt: Unkown command: getPollName poll=

Command producing error: <expect "Do you like apples?" getPollName poll=>

Line 5, file poll-us1.txt: Unkown command: getPollAnswers poll=

Command producing error: <expect "{yes,no}" getPollAnswers poll=>

To overcome the errors accused by EasyAccept, Bob defines the getter methods in

PollFacade. It now becomes:

public class PollFacade {

public void createPoll(String name, String answers) { }

 public String getPollName(String poll) { return ""; }

 public String getPollAnswers(String poll) { return ""; }

}

Notice that Bob still hasn‟t coded the actual implementation of a poll being created and its

attributes being returned as the getters are called. He works in little steps, correcting each

little error at a time. “Didn‟t EasyAccept complain that it couldn‟t find the getter

commands?”, he said, “Then let‟s create them”. “Now, let‟s see what else it wants …” The

result of the new run of EasyAccept was:

Test file poll-us1.txt: 2 errors:

Line 4, file poll-us1.txt: Expected <Do you like apples?>, but was <>

Command producing error: <expect "Do you like apples?" getPollName poll=>

Line 5, file poll-us1.txt: Expected <{yes,no}>, but was <>

Command producing error: <expect {yes,no} getPollAnswers poll=>

Now EasyAccept recognizes the getters. The new problem is that it found divergences

between expected results and actual results output from the program. The program returned

blank strings, when “Do you like apples?” and “{yes,no}” were expected as the name and

answer choices for the poll supposedly created.

“Big deal”, he thinks. “I‟ll just make the getters return what the test script is asking.” He

modifies the getters so that they return the correct answers:

public String getPollName(String poll) { return "Do you like apples?"; }

public String getPollAnswers(String poll) { return "{yes,no}"; }

 14

Now look at the output of EasyAccept:

Test file poll-us1.txt: 3 tests OK

Ok, nice … But wait! Bob just cheated with EasyAccept, didn‟t he? This won‟t make him

produce working software … Never mind, please wait just a few more paragraphs and you‟ll

understand the way the technique works. Bob must always use the simplest code to make the

tests pass. He strives to see the message above (“… tests OK”) for the tests he is currently

working on (and also for all preceding tests that already pass), before making big changes to

the code. He can easily get lost if he doesn‟t follow this simple rule. As more test lines are

dealt with and coding progresses, he will be forced to create the correct code (see below).

Bob adds a few more test lines to poll-us1.txt. The script now creates two polls and checks

that they were created. Check out the new additions below:

 1 # user story 1 - Let the user create a poll. You need one question

 2 # (which is also the name of the poll) and at least 2 answer choices

 3 poll1=createPoll name="Do you like apples?" answers={yes,no}

 4 poll2=createPoll name="Do you like oranges?" answers={sure,nope}

 5 expect "Do you like apples?" getPollName poll=${poll1}

 6 expect "{yes,no}" getPollAnswers poll=${poll1}

 7 expect "Do you like oranges?" getPollName poll=${poll2}

 8 expect "{sure,yikes}" getPollAnswers poll=${poll2}

Upon running EasyAccept, the results are:

Test file poll-us1.txt: 2 errors:

Line 7, file poll-us1.txt: Expected <Do you like oranges?>, but was <Do you

like apples?>

Command producing error: <expect "Do you like oranges?" getPollName poll=>

Line 7, file poll-us1.txt: Expected <{sure,nope}>, but was <{yes,no}>

Command producing error: <expect {sure,nope} getPollAnswers poll=>

Errors were detected because the program is always outputting the same results (the first

poll‟s attributes) for any poll, and divergences were found when the test script asked for the

second poll‟s name and answers.

Bob must now stop “cheating” with EasyAccept, if he wants all these tests to pass. He must

do some serious coding and implement the actual poll creation, so that the getters can return

the correct poll names and answers. Before starting with Bob‟s implementation, though, we

must introduce in a few lines some concepts that will be needed to fully understand what he‟ll

do.

Business Objects

Let‟s talk a bit about business objects. They are logical entities manipulated by the program

that make sense to the client, i.e., clients can understand what they mean and represent. They

are also the domain names a client employs when discussing software requirements with the

developers. A supplier, an order, a product item in a sales program; a player, a board place, a

die in a Monopoly game; in Alice‟s program, a poll, a voter, a vote.

Business objects may or may not (but typically do) correspond to actual single software

objects. Even if they don‟t (e.g., if a number of interrelated objects and structures as a whole

 15

actually serve as a single business object), that remains hidden to the client. The client doesn‟t

care how a particular business object is actually internally represented in the program.

Thinking the other way around, the only kind of object that should appear in an acceptance

test script is the business objects kind (that‟s the Only Business Objects pattern, see section

2). A client doesn‟t understand non-BOs and will get confused if they start appearing in a

script. For example, specific data structures like trees, queues, linked lists; database

connections, middleware components; mock objects and design pattern-related objects. In

most cases, those are low-level concepts that are out of a client‟s grasp and will likely turn a

script into a complicated and unintelligible mess.

However, we don‟t mean to say that there shouldn‟t be tests for these structures. On the

contrary, everything must be fully tested to ensure the code will work. What we mean is that

programmers should employ unit tests (especially with test-driven development) to gain

confidence in their low-level code. When a programmer runs an EasyAccept script and some

test fails, he must know where the error lies. If a lower level unit test captures the exact point

of failure, the better for the programmer. Bob will employ unit tests in the poll program‟s

code in a few paragraphs. For now, let‟s make sure you focus on another concept: business

object references.

Business Object References

A reference to a business object is a unique identifier with which it can be unequivocally

referred to in a script. As we have introduced a few pages above, string-valued keys
4
 are used

to provide unique identifiers to BOs within a script. Test writers write tests using variables,

such as poll1 and poll2, and the value that is stored in these variables is what determines the

uniqueness of a business object. Programmers must code the mechanism of unique attribution

to an object, as you will see in Bob‟s implementation below. This is the BORef pattern: use

keys as variables coupled with an internal uniqueness mechanism to create references to

business objects in a script.

Implementing the First User Story

Bob starts coding “for real”, in order to comply with the new user story 1 tests. He will need a

longer step this time to make all the tests pass because he needs to implement the full creation

process of a poll. Bob always begins the thought process in a top-down fashion starting with

the Façade; as the Façade must access the main program entities through a simple interface, it

is a good opportunity to figure out which such entities he‟ll need.

For a simple program such as Poll, Bob simply makes calls to a main class he named

PollSystem. The Façade‟s methods simply push the responsibility of doing the job further to

PollSystem. Bob‟s first implementation of PollFacade turns out like this:

package poll;

import util.MalformedStringException;

import util.StringParser;

import java.util.Collection;

4
 Keys are not necessarily string-valued

 16

public class PollFacade {

 private PollSystem pollSystem;

 public PollFacade() {

 pollSystem = new PollSystem();

 }

 public String getPollName(String poll) {

 return pollSystem.getPollName(poll);

 }

 public String getPollAnswers(String poll) {

 Collection answers = pollSystem.getPollAnswers(poll);

 return StringParser.collectionToString(answers);

 }

 public String createPoll(String name, String answers)

throws MalformedStringException {

 return pollSystem.createPoll(name, StringParser

 .stringToCollection(answers));

 }

}

In addition to forwarding the calls to corresponding methods in PollSystem, PollFacade

also deals with the conversion and formatting of string collections to the syntax used in the

test script (comma-separated items enclosed in curly brackets) via the utility methods of the

class StringParser: collectionToString and stringToCollection. The former takes a

Collection and returns a String in the format required, and the latter takes a String and

parses it into a Collection. The exception MalformedStringException is thrown by

StringParser when one tries to convert into a collection a string with an invalid format.

This makes a perfect example of the point we wanted to make previously when discussing

business objects. StringParser is an inner program entity that isn‟t accounted for in the

acceptance tests. Should there be tests for the string parsing/formatting? Of course!

Everything must be fully tested. But should those tests be in poll-us1.txt? Only if that

makes sense to the client. Bob believes that this is too much detail for Alice, but he needs to

create tests for the string conversion and formatting anyway. This is where unit tests come in

handy.

In order not to divert this chapter from the goal we set (and also because a number of the

readers might already be well acquainted with unit tests), we have removed the discussion of

this step to appendix II. Feel free to read that chapter now if you know absolutely nothing

about unit tests; alternatively, you can believe that StringParser‟s code works just fine and

skim that appendix later.

As a side note, also observe that these conversion functionalities could well be EasyAccept‟s

job. As a matter of fact, by the time you read this, collection utilities including conversions

will likely be a built-in feature of EasyAccept. We decided to exclude the automatic

conversion from this text to illustrate how Bob merged development with acceptance tests and

unit tests.

Bob then codes PollSystem, since PollFacade can‟t be compiled due to numerous

references to that still nonexistent class. While sorting out and filling in the methods of

 17

PollSystem, Bob takes the opportunity to think out the low-level design of the classes he‟ll

need. “A poll system handles polls …” – he ponders – “For now, the system just needs to

create them and allow access to their attributes. Let me create a Poll class to be instantiated

as needed in a PollSystem.”

Bob only codes what is needed. Even though he knows the Poll class will have multiple

responsibilities in the future, such as counting votes and handling access to specific poll

answers, this first version simply does what the tests demand. Poll then turns out to be a

simple class (for the moment) that takes a name and a collection of answers and stores that

information for later retrieval.

package poll;

import java.util.Collection;

import java.util.List;

import java.util.LinkedList;

import java.util.UUID;

public class Poll {

 private String name;

 private List<String> answers;

 private String id;

 Poll(String name, Collection<String> answers) {

 this.name = name;

 this.answers = new ArrayList<String>(answers);

 /* get a randomized unique universal identification for id */

 this.id = UUID.randomUUID().toString();

 }

 String getName() { return name; }

 List getAnswers() { return answers; }

 String getID() { return id; }

}

In the constructor, Bob implements the unique identification mechanism for a poll. He

employs the Java class util.UUID to generate a random unique String in the program, and

uses it as a poll‟s id. Additionally, he included the getID method, so that PollSystem can

access at any time the poll‟s id.

Bob sets out to complete PollSystem, now that he‟s got a Poll class. See the code for

PollSystem below, followed by comments.

package poll;

import java.util.Collection;

import java.util.HashMap;

import java.util.Map;

public class PollSystem {

 private Map<String, Poll> polls;

 18

 PollSystem() {

 polls = new HashMap<String, Poll>();

 }

 String createPoll(String name, Collection<String> answers) {

 Poll p = new Poll(name, answers);

 polls.put(p.getID(), p);

 return p.getID();

 }

 String getPollName(String poll) {

 return getPoll(poll).getName();

 }

 Collection getPollAnswers(String poll) {

 return getPoll(poll).getAnswers();

 }

 Poll getPoll(String pollID) {

 return polls.get(pollID);

 }

}

PollSystem stores polls into a Map, so that a poll can be easily retrieved given its id (that is

done in the method getPoll). The methods getPollName and getPollAnswers use getPoll

to find a specific poll and return the desired attribute. Finally, the method createPoll takes a

poll‟s name and answers, creates the corresponding Poll object and puts it into the Map using

its id as the key.

You may have noticed how little Bob is handling errors and exceptions in all of the preceding

code. Please take that for granted for now, because he‟ll do so in a few moments when tests

for errors are introduced in the script. In a typical round of user story implementation, Bob

would have introduced those tests for errors in his very first and full-fledged version of poll-

us1.txt. However, we asked him to co-write tests and code in little chunks so that our

exposition of EasyAccept‟s syntax and the ATDD methodology would be softened.

Bob runs EasyAccept once again and gets the message:

Test file poll-us1.txt: 6 tests OK

The code Bob just wrote passes all tests, i.e., the poll program successfully creates polls and

is able to get information back from them. However, this functionality is far from fully tested.

A good testing script must submit the program to as many error, limit and special situation

checks as possible.

Testing for Errors

Bob adds a few more test lines to poll-us1.txt. He uses an acceptance test creation pattern

called Command Errors to cover the tests he‟ll need. This pattern consists in analyzing, for

each script command created, error conditions such as invalid arguments or invalid usage of

the command. For the command createPoll, Bob recalls that a poll can‟t be created without

a name, and at least two answer choices must be provided (those are requirements stated in

the user story‟s description). For the getters, he finds required tests would be to check if a

valid existing poll is passed as an argument to the command.

 19

 1 # user story 1 - Let the user create a poll. You need one question

 2 # and at least 2 answer choices

 3 poll1=createPoll name="Do you like apples?" answers={yes,no}

…

10 # using the pattern CommandErrors with the command createPoll

11 expectError "Poll must have a name" createPoll name="" answers={yes,no}

12 expectError "Poll must have at least two answers" \

13 createPoll name="Do you like apples" answers={yes}

14 expectError "Poll must have at least two answers" \

15 createPoll name="Do you like apples" answers={}

16 expectError "Poll must have at least two answers" \

17 createPoll name="Do you like apples" answers=""

18 # CommandErrors for the getters

19 expectError "Poll does not exist" getPollName poll=abc

20 expectError "Poll does not exist" getPollAnswers poll=abc

Let‟s analyze the new test lines and introduce some more script elements Bob used. The built-

in command EasyAccept employs to test for errors is called expectError. Its syntax is just

like the expect command with the difference that it expects an error message instead of a

command return value. Moreover, the expectError command only passes if an actual Java

exception or error was thrown (which wouldn‟t be case if, incidentally, the command returned

a String with the exact content of the message). For example, to make the test of line 11 pass,

Bob would have to implement a Java exception being thrown in PollSystem‟s createPoll

method when a blank name was received as an argument.

Other new elements you can observe in the script are the “\” characters in the end of lines 12,

14 and 16. The “\” character tells EasyAccept that the test continues on the following line;

you can use it when a test is too big to fit on a single line, for visual convenience. Should you

ever need to use the actual backslash character in a script, use this sequence: “\\”.

Unsurprisingly, Bob gets six divergences between the test script and the program‟s behavior

after the addition of these six lines. This is the output of EasyAccept:

Test file poll-us1.txt: 6 errors:

Line 11, file poll-us1.txt: Expected <Poll must have a name>, but no error

occurred.

Command producing error: <expectError "Poll must have a name" createPoll

name= answers={yes,no}>

Line 13, file poll-us1.txt: Expected <Poll must have at least two answers>,

but no error occurred.

Command producing error: <expectError "Poll must have at least two answers"

createPoll name="Do you like apples" answers={yes}>

Line 15, file poll-us1.txt: Expected <Poll must have at least two answers>,

but no error occurred.

Command producing error: <expectError "Poll must have at least two answers"

createPoll name="Do you like apples" answers={}>

Line 17, file poll-us1.txt: Expected the error message <Poll must have at

least two answers>, but no error occurred.

Command producing error: <expectError "Poll must have at least two answers"

createPoll name="Do you like apples" answers=>

Line 19, file poll-us1.txt: Expected the error message <Poll does not

exist>, but the error message was <(no message: exception =

java.lang.NullPointerException)>

 20

Command producing error: <expectError "Poll does not exist" getPollName

poll=abc>

Line 20, file poll-us1.txt: Expected the error message <Poll does not

exist>, but the error message was <(no message: exception =

java.lang.NullPointerException)>

Command producing error: <expectError "Poll does not exist" getPollAnswers

poll=abc>

EasyAccept reported either no errors happening in the first four tests or different errors than

expected in the last two tests (uncaught NullPointerExceptions were thrown). As we

previously said, Bob hadn‟t worried about exceptions in the first place; now he must modify

the code to cope with them.

The methods that must throw exceptions are those in PollSystem: createPoll and getPoll.

Bob changes createPoll to add lines testing for the error conditions required in the script

(we will deal with getPoll in a few paragraphs). The new code follows:

public String createPoll(String name, Collection<String> answers)

 throws PollCreationException {

 if (name == null || "".equals(name))

 throw new PollCreationException("Poll must have a name");

 if (answers.size() < 2)

 throw new PollCreationException(

 "Poll must have at least two answers");

 Poll p = new Poll(name, answers);

 polls.put(p.getID(), p);

 return p.getID();

}

Bob then creates the corresponding exception classes in a hierarchy of specific exceptions to

the poll program: PollCreationException extending a generic PollException superclass.

package poll;

public class PollException extends Exception {

 public PollException(String message) {

 super(message);

 }

}

package poll;

public class PollCreationException extends PollException {

 public PollCreationException(String message) {

 super(message);

 }

}

The Façade must also be changed. As it should simply forward to EasyAccept exceptions

thrown in the inner program, the only modification he makes to the Façade is the inclusion of

Java throws clauses to createPoll. Recall that MalformedStringException is related to

StringParser and is part of the util package (refer to appendix II for more detail). The

Façade method‟s signature now become:

public String createPoll(String name, String answers) throws

MalformedStringException, PollCreationException

 21

Now an exception is thrown every time one tries to create a poll with a blank name or with

less than two answers. Bob runs EasyAccept and checks if the modification works. The

output was

Test file poll-us1.txt: 2 errors:

Line 19, file poll-us1.txt: Expected the error message <Poll does not

exist>, but the error message was <(no message: exception =

java.lang.NullPointerException)>

Command producing error: <expectError "Poll does not exist" getPollName

poll=abc>

Line 20, file poll-us1.txt: Expected the error message <Poll does not

exist>, but the error message was <(no message: exception =

java.lang.NullPointerException)>

Command producing error: <expectError "Poll does not exist" getPollAnswers

poll=abc>

Ok, that means the first 4 tests for errors (relating to a poll‟s creation) passed. The remaining

lines relate to the lack of an exception being thrown in the method getPoll of PollSystem

when trying to access a poll that doesn‟t exist. That this should happen is obvious to Bob, a

seasoned programmer. However, suppose he doesn‟t have a clue of the exact point in the code

where the error lies. He only got from EasyAccept the information that a

NullPointerException was thrown somewhere. Couldn‟t EasyAccept be a little more

specific? Certainly, and that‟s what we will introduce in the next subsection.

Debugging with EasyAccept

EasyAccept has a built-in command called stackTrace for debugging. The programmer can

place it in the script before any command that results in an exception, and when EasyAccept

is run, it prints out the full stack trace of the exception or error that occurred. Knowing this,

Bob puts a stackTrace command at the beginning of line 19, as below:

19 stackTrace expectError "Poll does not exist" getPollName poll=abc

20 expectError "Poll does not exist" getPollAnswers poll=abc

When he runs EasyAccept, instead of receiving a simple “NullPointerException was

thrown” message, he gets the following message (abridged here, because the full Java stack

trace is really long-winded):

Test file poll-us1.txt: 2 errors:

Line 19, file poll-us1.txt:

easyaccept.EasyAcceptException: Line 19, file poll-us1.txt: Expected the

error message <Poll does not exist>, but the error message was <(no

message: exception = java.lang.NullPointerException)>

...

Caused by: java.lang.NullPointerException

 at poll.PollSystem.getPollName(PollSystem.java:30)

 at poll.PollFacade.getPollName(PollFacade.java:16)

...

Command producing error: <stackTrace expectError "Poll does not exist"

getPollName poll=abc>

Line 20, file poll-us1.txt: Expected the error message <Poll does not

exist>, but the error message was <(no message: exception =

java.lang.NullPointerException)>

 22

Command producing error: <expectError "Poll does not exist" getPollAnswers

poll=abc>

Reading the stack trace, Bob can spot that the NullPointerException was thrown in the

method getPollName from PollSystem at code line 30, which turns out to be

return getPoll(poll).getName();

That is, a NullPointerException is being thrown because the method getPoll is returning

null and the code is trying to call a method from it. Taking a look at getPoll‟s code, Bob

immediately sees the problem. Bob now changes the code of getPoll to throw an exception

when the poll requested is not found:

public Poll getPoll(String pollID) throws NonexistentPollException {

 Poll p = polls.get(pollID);

 if (p == null) throw

new NonexistentPollException("Poll does not exist");

 return p;

}

Bob must also create the NonexistentPollException class extending PollException:

package poll;

public class NonexistentPollException extends PollException {

 public NonexistentPollException(String message) {

 super(message);

 }

}

Additionally, he updates the Façade with throws clauses in the methods that use getPoll:

public String getPollName(String poll) throws NonexistentPollException

public String getPollAnswers(String poll) throws NonexistentPollException

That not only solves the problem of line 19, but also that of line 20, which stemmed from the

same cause. If he runs EasyAccept again, he gets the message:

Test file poll-us1.txt: 1 errors:

Line 19, file poll-us1.txt: (No exception thrown.)

Command producing error: <stackTrace expectError "Poll does not exist"

getPollName poll=abc>

“Oops, I forgot to remove the stackTrace command from line 19”, he ponders. That‟s

exactly what happened. He left a stackTrace at line 19, but no exception was thrown. After

he removes the stackTrace statement from line 19, Bob runs EasyAccept once again and

verifies that all tests now pass:

Test file poll-us1.txt: 12 tests OK

Bob treats himself to a nice cup of coffee.

 23

Testing for Differences

The tests for the first user story are not complete, though. “What happens”, Bob thinks, “when

I try to create a poll with an already existing name?” He is not exactly sure if this should be

allowed or result in an error, so he gives Alice a call. She answers that this is not an error,

because two polls could have the same name, even the same answer choices, but still be

different (for example, she could want a given poll to be repeated every week). Bob promptly

adds the clarification to the test script in the form of a comment (this is the Commentor

pattern, as detailed in section 2) and includes tests for this case in poll-us1.txt. Below are the

lines that were added.

21

22 # polls may have all attributes equal and still be distinct polls;

23 # for the tests below, even though they have the same name and answer

24 # choices, polls 1 and 3 must be different

25 poll3=createPoll name="Do you like apples?" answers={yes,no}

26 expectDifferent ${poll1} echo ${poll3}

Let us explain two more EasyAccept built-in commands used by Bob in the preceding tests.

The command expectDifferent has a syntax similar to that of the expect command, but the

test writer specifies a value not expected instead. The test passes if any value except for the

one specified is returned by the business logic command that follows. In the case of line 25,

the command that follows is the built-in command echo. It does what the name implies – it

simply returns the concatenation of its arguments. It has been used there because of

expectDifferent‟s syntax: it requires a command after the value not expected.

In the script, Bob is using expectDifferent in line 25 to make sure the ids poll1 and poll3

are different and thus represent two different business objects. Bob had already implemented

this when he devised the internal key mechanism. He runs EasyAccept again and gets the

following result:

Test file poll-us1.txt: 14 tests OK

Completing User Story 1

Bob considers one more special case. “Can there be repeated answers in a poll?” – He asks

Alice, and she replies – “No, there shouldn‟t be. It doesn‟t make sense. But couldn‟t the

program simply ignore repeated answers and act as though the user typed them inadvertently?

”. “That could be done”, says Bob. He adds some more lines to poll-us1.txt, which we outline

below.

27

28 # repeat answers within a poll should be ignored

29 poll4=createPoll name="Do you like me?" answers={yes,yes,no}

30 expect "{yes,no}" getPollAnswers poll=${poll4}

In line 29, Bob creates a poll with repeated answers but, as Alice requested, no error should

be thrown. The program should creat the poll and throw repeated answers away. Line 30

checks that the poll program is actually eliminating the repeated answer.

Now this hasn‟t been implemented yet. When Bob runs EasyAccept, it complains of line 30.

 24

Test file poll-us1.txt: 1 errors:

Line 30, file poll-us1.txt: Expected <{yes,no}>, but was <{yes,yes,no}>

Command producing error: <expect {yes,no} getPollAnswers poll=89f04fb7-

72c5-4940-8696-827bb3ee7492>

Just as a side note, observe the huge id that was returned by createPoll and assigned to the

variable poll4. That‟s the sort of unique identifier created by Java‟s util.UUID class.

To make this new test work, Bob makes the simplest change he can come up with (of course,

without cheating). He decides to change the answers data structure, which is stored in the

Poll class, from a List to a Set. That way, element repetition can be handled automatically

when an answer is added to the data structure. In Java, both interfaces, List and Set, are

derived from the generic interface Collection, which is referenced throughout the entire

code and passed as argument to and from PollFacade and PollSystem. The actual

implementation is held in the class Poll. That‟s the only class he needs to change. The new

code for the Poll class is depicted below, and the places where changes were made are in

bold.

package poll;

import java.util.Collection;

import java.util.Set;

import java.util.LinkedHashSet;

import java.util.UUID;

public class Poll {

 private String name;

 private Set<String> answers;

 private String id;

 Poll(String name, Collection<String> answers) {

 this.name = name;

 this.answers = new LinkedHashSet<String>(answers);

 /* get a randomized unique universal identification for id */

 this.id = UUID.randomUUID().toString();

 }

 String getName() { return name; }

 Set getAnswers() { return answers; }

 String getID() { return id; }

}

The implementation of the answers data structure changed from an ArrayList to a

LinkedHashSet. After a new run of EasyAccept, he gets good news:

Test file poll-us1.txt: 16 tests OK

Bob can‟t think of any more tests to include in poll-us1.txt. At this point, Bob grins and gets

more coffee, since he made the first user story of the poll program fully functional. The poll

program handles error situations when the user tries to create invalid polls, and even handles

repeated answers. It creates polls successfully and stores their information correctly in a

single program session. However, Bob hasn‟t implemented a persistence mechanism yet;

 25

we‟ll talk about persistence testing when we present the pattern Persistence Tester in section

2.

He shows testing results to Alice, who is also excited at the news.

At this point, Bob might do some refactoring, if needed, before moving on to implement the

second user story. Two rules are followed when refactoring: 1) all tests must pass before

refactoring; 2) all tests must pass after refactoring. That is, Bob only changes the code from a

working state to another working state. At any time, he might also have ideas for new tests, as

the process of test creation is not always completed in one sitting. Alice herself can also

create tests if she wants, and they should be swiftly integrated with the test base.

Whenever ideas for new occur to Bob, if he has doubts on what should happen, he must ask

Alice for clarification (she herself might not know what she really wants!!). She either

approves or disapproves the test (and this step is of utmost importance, or else Bob might be

introducing requirement bugs in the tests and consequently in the program). Bob and Alice

must bear in mind that the tests must always be improving – this is part of the test

maintenance activity in acceptance test-driven development. The better the tests, the more

confident everyone becomes that the program does what it should correctly.

Concluding remarks before user story 2

This illustration of ATDD techniques to implement user story 1 served the purpose of

introducing the methodology and EasyAccept‟s syntax in a stepwise manner. However, there

are some differences from what Bob would actually do in practice. First of all, most of the test

writing would be done upfront, and not in parallel with the coding of user story 1. From the

beginning, Bob already had a good idea of which test conditions, errors, etc. he would need to

include in the test script; furthermore, he knows test creation patterns well, so most of poll-

us1.txt would be complete even before the first line of code was written.

A second remark: although this wasn‟t demonstrated in this user story, errors in the test script

occur frequently. They are mostly typos, however, and are immediately identified when one

runs EasyAccept. More serious acceptance test bugs (which are requirements bugs) can be

prevented if the test writer always gets feedback from the client and/or the client reviews the

test scripts frequently. Programmers must also always ask the client for clarifications, and not

introduce tests on his own.

Implementing the second user story

Bob now turns his attention to the second user story. The sequence of steps followed is the

same as for the first user story. Before starting to code, Bob needs acceptance tests. Based on

the user story description, new commands are added to the script language. Such commands

are combined with existing commands (created for previous tests) and EasyAccept built-in

commands to create the set of tests. Alice reviews the tests, suggesting modifications and

clarifying issues, and then Bob starts to code driven by the revised script.

User story 2 – Let the user cast a vote for a poll. He chooses a poll and one of the possible

answers.

 26

This turns out to be a straightforward user story. Bob only needs a doer command to vote a

given answer for a given poll, and a getter to check if the voting action actually casts votes

correctly. The commands defined are:

vote poll=<String> answer=<String>

getNumberOfVotes poll=<String> answer=<String>

In addition, he devises a preparer command called clearSystemData to be used at the

beginning of the test script. This command is necessary to make the tests for user story 2

independent from other tests. For example, polls created in other test scripts, like poll-us1.txt,

might introduce noise in the test script for user story 2 and be a potential source of errors.

The test script Bob produces consists in issuing some votes for a given poll, and checking if

the number of votes for the answers increases accordingly (he is using the Test Flow pattern).

Furthermore, he uses the test creation pattern Command Errors on the commands vote and

getNumberOfVotes to assure that bad voting conditions result in errors. He saves the script in

file poll-us2.txt. As we said, Bob usually writes a test script in an upfront manner, so we

reproduce it in its entirety below:

 1 # user story 2 - Let the user cast a vote for a poll.

 2 # He chooses a poll and one of the possible answers.

 3

 4 clearSystemData

 5

 6 poll1=createPoll name="Do you like apples?" answers={yes,no}

 7 expect 0 getNumberOfVotes poll=${poll1} answer=yes

 8 expect 0 getNumberOfVotes poll=${poll1} answer=no

 9

10 vote poll=${poll1} answer=yes

11

12 expect 1 getNumberOfVotes poll=${poll1} answer=yes

13 expect 0 getNumberOfVotes poll=${poll1} answer=no

14

15 vote poll=${poll1} answer=yes

16 vote poll=${poll1} answer=no

17

18 expect 2 getNumberOfVotes poll=${poll1} answer=yes

19 expect 1 getNumberOfVotes poll=${poll1} answer=no

20

21 # using the pattern Command Errors with the commands

22 # vote and getNumberOfVotes

23

24 expectError "Poll does not exist" vote poll=abc answer=yes

25 expectError "There's no such answer for this poll" \

26 vote poll=${poll1} answer=maybe

27 expectError "Poll does not exist" getNumberOfVotes poll=abc answer=yes

28 expectError "There's no such answer for this poll" \

29 getNumberOfVotes poll=${poll1} answer=maybe

Alice reviews the tests and approves them. Bob then implements the code that will make the

tests pass. He runs EasyAccept, now including poll-us2.txt as an argument (note that poll-

us1.txt must also be part of the EasyAccept run, to make sure new code doesn‟t introduce

bugs to the code of the first user story). He runs EasyAccept as follows:

 27

java easyaccept.EasyAccept poll.PollFacade poll-us1.txt poll-us2.txt

Alternatively, Bob could have used a mask like in

java easyaccept.EasyAccept poll.PollFacade poll-us*.txt

Alternatively, he can move the acceptance tests to a separate folder and call EasyAccept with

a reference to the folder. For example, if he put the tests in a folder called acctests, the call

would be

java easyaccept.EasyAccept poll.PollFacade acctests

EasyAccept reports errors for unrecognized commands clearSystemData,

getNumberOfVotes or vote (they are not included in PollFacade yet).

Test file poll-us1.txt: 16 tests OK

Test file poll-us2.txt: 15 errors:

Unknown command: clearSystemData

Command producing error: <clearSystemData>

Line 6, file poll-us2.txt: Unexpected error: Unknown command:

getNumberOfVotes poll=d8c07e1d-2c81-45d7-8300-735d8a68d89d answer=yes

Command producing error: <expect 0 getNumberOfVotes poll=d8c07e1d-2c81-

45d7-8300-735d8a68d89d answer=yes>

...

Bob then adds those commands as methods in PollFacade, whose code simply directs the

corresponding requests to PollSystem, as below:

public void clearSystemData() {

 pollSystem.clearSystemData();

 }

 public void vote(String poll, String answer) {

 pollSystem.vote(poll, answer);

 }

 public int getNumberOfVotes(String poll, String answer) {

 return pollSystem.getNumberOfVotes(poll, answer);

 }

In PollSystem, he keeps following the rule of thumb in test-driven development: use the

simplest code to make tests pass. It simply does nothing until a test breaks.

public void clearSystemData() { polls = new HashMap<String, Poll>();

}

As for the remaining command, Bob makes the method vote in PollSystem do nothing, and

makes getNumberOfVotes always return 0. With that simple implementation, he reduces the

errors from 15 down to 7 when running EasyAccept:

Test file poll-us1.txt: 16 tests OK

Test file poll-us2.txt: 7 errors:

Line 12, file poll-us2.txt: Expected <1>, but was <0>

 28

Command producing error: <expect 1 getNumberOfVotes poll=61ac33ea-899b-

41c6-b408-beadf937ea0b answer=yes>

...

That is, the first error occurs when a vote has been cast but was unaccounted for. Bob must

now implement the actual voting mechanism, which will as a consequence trigger a cascade

of passing tests in the next run.

Votes are cast within a poll to a given answer. Bob needs to change the Poll class to deal

with answers, which must now be treated not as mere strings but as objects with

responsibilities (they store votes, they are voted for, etc.). Polls must maintain a set of

answers, process their search and control their access. The final Poll class is depicted below.

Modifications to the class are in bold.

package poll;

import java.util.Collection;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Set;

import java.util.LinkedHashSet;

import java.util.UUID;

public class Poll {

 private String name;

 private Set<Answer> answers;

 private Map<String, Answer> answerMap;

 private String id;

 Poll(String name, Collection<String> answers) {

 this.name = name;

 this.answers = new LinkedHashSet<Answer>();

 this.answerMap = new HashMap<String, Answer>();

 /* get a randomized unique universal identification for id */

 this.id = UUID.randomUUID().toString();

 /* initializes individual answers and adds them to the Map */

Set<String> uniqueAnswers = new LinkedHashSet<String>(answers);

 Iterator<String> it = uniqueAnswers.iterator();

 while(it.hasNext()) {

 String oneAnswer = it.next();

 Answer ans = new Answer(oneAnswer);

 this.answers.add(ans);

 answerMap.put(oneAnswer, ans);

 }

 }

 String getName() { return name; }

 Set<Answer> getAnswers() { return answers; }

 String getID() { return id; }

 Answer getAnswer(String answer) throws NonexistentAnswerException {

 Answer ans = answerMap.get(answer);

 if(ans == null) throw new NonexistentAnswerException(

 29

 "There's no such answer for this poll");

 return ans;

 }

 int getVotes(String answer) throws NonexistentAnswerException {

 return getAnswer(answer).getNumberOfVotes();

 }

 void vote(String answer) throws NonexistentAnswerException {

 vote(getAnswer(answer));

 }

 void vote(Answer ans) { ans.vote(); }

}

The basic structural modification made to the Poll class is that the set of answers is now not

simply a Set of Strings, but a Set of Answer objects. Naturally, the code won‟t compile

because there is no such Answer class (but Bob will do this in a minute). To ease access to a

specific answer from the set given its name, Bob also creates an answer Map. In addition to the

required methods vote and getVotes, which Poll forwards to the specific Answer, Bob

created a method getAnswer, in which an exception is thrown should an answer not exist in

the set.

Bob then codes the Answer class. An answer has a name and a number of associated votes. It

relates to a poll by composition (a poll has several answers) and its contents are thus accessed

within a poll. The script command vote will ultimately trigger the vote method in the

specific Answer object related to the Poll object referred to in the script. The same applies

to getting the number of votes for a given answer.

package poll;

public class Answer {

 private String name;

 private int numberOfVotes;

 Answer(String name) {

 this.name = name;

 this.numberOfVotes = 0;

 }

 String getName() { return name; }

 int getNumberOfVotes() { return numberOfVotes; }

 public String toString() { return getName(); }

 void vote() { numberOfVotes++; }

}

In order for the new code to work, PollSystem must also be updated. The methods vote and

getNumberOfVotes, instead of doing nothing and returning 0, are updated to include simple,

forward-to-the-expert-class code:

 30

int getNumberOfVotes(String poll, String answer)

 throws NonexistentPollException, NonexistentAnswerException {

 return getPoll(poll).getVotes(answer);

 }

void vote(String poll, String answer)

 throws NonexistentPollException, NonexistentAnswerException {

 getPoll(poll).vote(answer);

 }

Bob finishes preparing the code, saves everything and runs EasyAccept.

Test file poll-us1.txt: 16 tests OK

Test file poll-us2.txt: 15 tests OK

All tests from both test files are working. He tells Alice the good news and sets off to

implement user story 3, after a cup of coffee, of course.

Implementing the third user story

User story 3 – Generate a report with the results of a poll, including the total number of votes

for each option and the corresponding percentage.

Bob reads the description of user story 3. A full report, including final layout as presented to

the user of the program, will not be tackled by Bob right now. Alice still has not decided the

report layout or the medium she wants the data to be presented in (plain text, graphs, pdf files,

etc.). If she said, for example, that she wanted the report as a text with a given format, Bob

could use the pattern Template Tester to compare the program‟s output with a template of

the expected report text. If you want to look now how Bob could test this, refer to the

discussion of Template Tester on section 2.

However, this user story first needs to test the program‟s business logic. The beautifully

presented report would be worthless if the output included wrong data, like totals and

percentages. “Voting totals can be caught with getNumberOfVotes for each answer, but for

the percentages I‟ll need a new command”, thinks Bob. He then comes up with the following

command,

getPercentageOfVotes poll=<String> answer=<String>

, which returns a double precision number. Bob thinks about the tests he‟ll need. He‟s got a

new command, so he throws in some Command Errors tests for getPercentageOfVotes.

To check if totals and percentages are being calculated correctly, he devises a simple scenario

with a two answers poll (yes or no) and expect commands in various points between a series

of votes for different percentage values. The script he came up with is depicted below (he

names it, naturally, poll-us3.txt):

 1 # user story 3 - Generate a report with the results of a poll,

 2 # including the total number of votes for each option and

 3 # the corresponding percentage.

 4

 5 poll1=createPoll name="Do you like apples?" answers={yes,no}

 6 expect 0 getNumberOfVotes poll=${poll1} answer=yes

 31

 7 expect 0 getNumberOfVotes poll=${poll1} answer=no

 8 expectWithin 0.000001 0.0 getPercentageOfVotes poll=${poll1} answer=yes

 9 expectWithin 0.000001 0.0 getPercentageOfVotes poll=${poll1} answer=no

10

11 vote poll=${poll1} answer=yes

12 expect 1 getNumberOfVotes poll=${poll1} answer=yes

13 expect 0 getNumberOfVotes poll=${poll1} answer=no

14 expectWithin 0.000001 100.0 getPercentageOfVotes poll=${poll1}answer=yes

15 expectWithin 0.000001 0.0 getPercentageOfVotes poll=${poll1} answer=no

16

17 vote poll=${poll1} answer=no

18 expect 1 getNumberOfVotes poll=${poll1} answer=yes

19 expect 1 getNumberOfVotes poll=${poll1} answer=no

20 expectWithin 0.000001 50.0 getPercentageOfVotes poll=${poll1} answer=yes

21 expectWithin 0.000001 50.0 getPercentageOfVotes poll=${poll1} answer=no

22

23 vote poll=${poll1} answer=yes

24 expect 2 getNumberOfVotes poll=${poll1} answer=yes

25 expect 1 getNumberOfVotes poll=${poll1} answer=no

26 expectWithin 0.1 66.7 getPercentageOfVotes poll=${poll1} answer=yes

27 expectWithin 0.1 33.3 getPercentageOfVotes poll=${poll1} answer=no

28

29 vote poll=${poll1} answer=yes

30 vote poll=${poll1} answer=yes

31 vote poll=${poll1} answer=yes

32 vote poll=${poll1} answer=yes

33 vote poll=${poll1} answer=yes

34 expect 7 getNumberOfVotes poll=${poll1} answer=yes

35 expect 1 getNumberOfVotes poll=${poll1} answer=no

36 expectWithin 0.1 87.5 getPercentageOfVotes poll=${poll1} answer=yes

37 expectWithin 0.1 12.5 getPercentageOfVotes poll=${poll1} answer=no

38

39 # using the pattern CommandErrors with the command getPercentageOfVotes

40 expectError "Poll does not exist" getPercentageOfVotes \

41 poll=abc answer=yes

42 expectError "There's no such answer for this poll" \

43 getPercentageOfVotes poll=${poll1} answer=maybe

In this script, Bob uses yet another EasyAccept built-in command: expectWithin. This

command is used to expect a floating-point number, such as a percentage of votes, within a

given precision. The syntax is expectWithin <precision> <expectedValue>

<businessLogicCommand>.

After Alice reviews the script, Bob starts to implement the new functionality. EasyAccept

doesn‟t understand getPercentageOfVotes, so errors are reported at line 8:

Test file poll-us1.txt: 16 tests OK

Test file poll-us2.txt: 15 tests OK

Test file poll-us3.txt: 12 errors:

Line 8, file poll-us3.txt: Unexpected error: Unknown command:

getPercentageOfVotes poll=15e41905-8aaa-4573-8363-b26b3b53e0c8 answer=yes

Command producing error: <expect 0,0 getPercentageOfVotes poll=15e41905-

8aaa-4573-8363-b26b3b53e0c8 answer=yes>

...

 32

He starts by implementing getPercentageOfVotes in PollSystem:

double getPercentageOfVotes(String poll, String answer)

 throws NonexistentPollException, NonexistentAnswerException {

 Poll p = getPoll(poll);

 if(p.getTotalVotes() != 0) {

 return (double) p.getVotes(answer) * 100.0

 / (double) p.getTotalVotes();

 } else {

 return 0.0;

 }

 }

To get the percentage of votes for a given answer, Bob needs the total votes cast in a given

poll. That‟s why there‟s a call to the (still nonexistent) method getTotalVotes in the Poll

class. This method sums votes for all answers:

public class Poll {

 …

int getTotalVotes() {

 int totalVotes = 0;

 Iterator<Answer> it = answers.iterator();

 while(it.hasNext()) {

 Answer ans = it.next();

 totalVotes += ans.getTotalVotes();

 }

}

}

Finally, he needs to add the corresponding method to PollFacade:

 public double getPercentageOfVotes(String poll, String answer)

 throws NonexistentPollException,

NonexistentAnswerException {

 return pollSystem.getPercentageOfVotes(poll, answer);

 }

In order to come up with the preceding working code, Bob had to run EasyAccept a few times

to resolve bugs in the process. For example, his first implementation threw a divide-by-zero

exception at line 8 (a line where no error was expected). The problem was in the method

getPercentageOfVotes in PollSystem. When no votes had been cast for any answer, the

total votes for the poll would be 0, and that value was being used as a denominator in the

calculation of the percentages without being previously treated. However, no matter how long

he takes to code and how many mistakes he makes in the process, he is sure to have a correct

code in the end, given that the tests are correct.

The final EasyAccept run confirms that all tests pass for the three user stories:

 33

Test file poll-us1.txt: 16 tests OK

Test file poll-us2.txt: 15 tests OK

Test file poll-us3.txt: 32 tests OK

Bob now has fully working software to show Alice. Of course, Alice still needs a user

interface to use with the poll program, but Bob can do that in little time with visual tools

hooking the graphical components to the Façade methods (that‟s one of the reasons why one

would code a Façade to a system, anyway). Or, if she is satisfied with a simple command-line

interface, it would be even quicker: Bob could use a single class with a main method as the

command-line interface. As Alice stated the three user stories would be the minimum useful

functionality she would need, she could be using the program right away if she wanted, after

this first programming session.

Concluding words

This first example illustrated how ATDD works and how you can easily apply the

methodology with EasyAccept. In the next chapter, ATDD is reconsidered more completely.

We explain the methodology in a software development process‟ point of view, depicting

activities performed, actors involved and practices used. That closes this first section on the

ATDD rationale.

 34

4 – ATDD: Driving Development with Acceptance Tests

In this chapter, we will outline a simple software development process driven by acceptance

tests. In this process, dubbed ATDD – acceptance test-driven development –, acceptance tests

produced cooperatively by clients and developers are used as the key artifact that guides and

controls software development and assures the final program is delivered correct.

ATDD is based on Extreme Programming (XP) and follows a number of techniques

sponsored by Test-Driven Development (TDD).

We have refrained from defining ATDD as a full-fledged process; rather, we brought together

only the essential activities to understand ATDD and removed activities not directly related to

the approach or for which we would not introduce anything particularly different from what

everyone already knows or does. You can complete the process with such remaining activities

and practices as you find necessary or suitable to your specific project‟s needs. Furthermore,

even the activities we do define are somewhat loose in certain aspects, e.g., who does them, or

when they end. This open-ended approach of presenting the process better serves our purpose

of being concise and allows us to stress what really matters. Observe that we do not mean

that, for example, configuration management or risk detection are not important activities in a

development process. They certainly are essential activities; we only mean you can do them

the way you prefer and we have nothing special to say about them.

ATDD is a lightweight, iterative and agile process. It is lightweight in that it does not require

a large number of diverse artifacts in the form of diagrams, models, descriptions, etc. and,

most importantly, it doesn‟t hold development back as a result of extensive bureaucratic

artifact maintenance activities. ATDD is based on iterations – predefined short periods of

time at the end of which working software is delivered. This boosts client satisfaction and

everyone‟s confidence in the progress of the development. Finally, ATDD is agile, as it

espouses practices for rapid quality software development, such as client cooperation,

obsessive compulsion for testing, short iterations, and many others, that make it especially

suitable to cope with changing or vague requirements. As with other agile processes, ATDD

puts the focus on the client as the principal actor whose needs must be served.

In ATDD, we define clients and developers as actors involved in the process. By client, we

mean any one who provides the project with requirements and business rules. This can be the

user of the final product, one of many stakeholders from an enterprise, or a product manager.

By developers, we include all people involved in the software development on the technical

side, be they programmers, analysts, testing specialists, etc. We decided to put everyone under

a single label because there are many different situations one may encounter in software

development, ranging from predefined roles with clear distinctions to projects in which roles

are rotated to projects in which every developer assumes various roles at a given time.

However, as we stated in chapter 2, software development might be backtracking to a point in

its history where the roles of analyst and programmer were more separated. ATDD allows this

separation of roles because requirements artifacts (acceptance tests) creation can be handled

separately from their usage to guide software production. The former activity needs direct

contact with clients while the latter requires more programming knowledge and more

occasional direct contact with the client. An analyst with good testing skills could provide a

useful interface between programmers and clients. Table 4.1 shows the responsibilities of

clients and developers in ATDD.

 35

Clients Developers Both

- Write user stories - Code user stories to make

acceptance tests pass

- Define a script language

- Prioritize user stories - Refactor existing code to

improve quality

- Write acceptance tests

(though developers generally

do this)

- Review acceptance tests

(helped by developers)

- Help find errors in the

acceptance tests

- Help identify new

acceptance tests

Table 4.1 – Project Responsibilities

ATDD is composed of three classes of activities: planning activities, activities that occur

during iterations, and maintenance activities. Most planning activities take place at the

beginning of the project (though iteration planning occurs at the beginning of iterations); a

series of iterations follow, during each of which a series of activities occur. Maintenance

activities occur during the entire lifecycle of the process. Figure 4.1 depicts an outline of the

activities involved in ATDD. The remainder of this chapter explains and details them.

Figure 4.1 – ATDD Process

Project Planning

The process begins with a few meetings and talks between the client and one or more

developers (or analysts, if your project has clear job distinctions). Not many people should be

involved in these talks. Ideally, the client and at most a couple of developers should do the

job. Too many people don‟t help overall understanding and hinder the flow of discussion. The

objectives of these initial meetings are to grow a common overview of the software that will

be created and to have a user story list written and analyzed, as well as a list of non-functional

requirements. However, the final prioritized user story list will depend on some extent on a

Planning

* User stories definition

* Non-functional requirements definition

* Architectural design

* Long-term planning (release plan)

Iterations

* Short-term planning (iteration plan)

* Script language definition

* Acceptance tests creation

* Implementation with ATDD techniques

Maintenance

* Refactoring

* Test Maintenance

 36

loose architectural design being done by the developers because they need to provide the

clients with estimates of time needed to complete each user story (and thinking out the

architecture of the program helps them come up with better estimates). Subsequently, a

release plan can be formulated that will dictate how and when the software will be created.

We have grouped all these activities into a class called project planning, which occurs prior to

software implementation and includes part of what is commonly called “analysis” in other

processes. Planning should not last more than a few (say, two or three) weeks
5
, even if it is

not yet clear for the client exactly what he wants the software to do. As an agile process,

ATDD handles change with ease and the client can be allowed to make up his mind later on to

some extent.

User story list definition

At first, the planning meetings serve the purpose of discussion and understanding. A glossary

of relevant terms needed to understand the area of application and a conceptual model

depicting important entities may also be built during these meetings, to aid understanding. In

the course of the planning period, before or during the meetings, the client writes a set of user

stories. User stories are short descriptions in direct sentences, no more than one or two

paragraphs, which summarize a feature that must be implemented.

In addition to these descriptions, the client must also prioritize the user stories, ranking higher

those features that have more business value. This step in needed to define the order in which

user stories will be developed. Along with their business value, the client decides the order of

user stories based on the developer‟s feedback in the form of time estimates and user story

dependencies after some sessions of architectural design that occur in tandem with the user

story list definition.

Time estimates give the client additional information to prioritize the user stories (if a certain

user story takes longer to complete, the client may prefer to have a series of shorter user

stories implemented first). The estimates may be hard to produce, as they depend on

developers‟ prior experience, but even rough estimates help achieve a better release plan.

Dependencies between user stories also affect the order with which they will be implemented.

At any time during the software development lifecycle, the client may add, remove or modify

user stories, as long as he keeps the user stories ranked and is warned that user stories are

implemented one at a time, respecting the order of priority. Modification of a user story that is

already implemented, however, is considered to be a new user story. Thus, it requires a new

time estimate and prioritization, as the time needed to realize the modification can differ a lot

from the original time required to implement the story from scratch.

Activity breakdown

Who does it: the client, helped by a few developers (analysts);

When it begins: as soon as possible, after the first meetings; user stories can be added /

deleted / modified during the course of the project as desired;

5
 Of course, larger projects may require more time since coming up with a viable architecture

is not always straightforward.

 37

When it ends: as soon as enough user stories have been written and prioritized to allow a

release plan to be created.

Architectural design

The activity in which developers make strategic high-level technical decisions to define the

internal structure of software is called architectural design, or high-level design. Based on the

client‟s needs (as described in the user stories), developers come up with an architecture, a

description of the program‟s higher-level modules and components and the relationships

between them. The architecture is often presented in the form of a variety of diagrams,

expressing different views of the system characteristics, and/or in the form of a text

description which includes key design decisions and justifications for them.

Key design decisions often include the resolution of tradeoffs and choices between non-

overlapping options, each with advantages and drawbacks. For example, when creating an

architecture, developers must decide on questions like: Will the system be centralized or

distributed? How will we modularize the system? Are we buying or developing from scratch

a particular module? How will we interface between the modules? What persistence data

model will we use? How will we integrate the legacy? These are issues that must be decided

early on in software development, because they are costly to change after implementation has

begun. Even though ATDD is an agile, change-friendly process, we believe architectural

design is an essential activity to be done in an upfront manner.

Activity breakdown

Who does it: a few of the developers (maybe specialized architects);

When it begins: after the first user stories are written by the client;

When it ends: a rough architecture must be produced before the user story list is prioritized

because developers need to provide the client with time estimates and dependencies; a refined

architecture must ideally be decided upon before implementation begins.

Non-functional requirement list definition

Non-functional requirements are conditions raised by the client that the software must meet

but that do not correspond to a function of the software, i.e., a user interaction that can be

described in a user story. Non-functional requirements are generally constraints or restrictions

on response time, performance, throughput, needs to support legacy or to use specific

software or hardware equipment, software development cost, legal restrictions, etc.

Although non-functional requirements are sometimes hard to meet, one of the main reasons

for which being the inability to write automated tests for such requirements, the good news is

that some of them can be tested. Performance, throughput and response time restrictions can

sometimes be automatically checked with acceptance tests.

Although they can be associated with a particular user story, non-functional requirements

often refer to the whole software. This way, tests for such requirements should ideally be

written before any user story is implemented, during the first iteration, so that such tests can

also drive development.

 38

During the weeks of planning, clients must create a list of non-functional requirements. The

part that is automatable with acceptance tests is identified and separated by the developer, and

the rest is kept for reference and discussed with management for the appropriate project

preparations.

Activity breakdown

Who does it: the client (non-technical requirements), architects (technical requirements);

When it begins: as soon as possible, after the first meetings; some non-functional

requirements must be agreed upon early on and may not (easily) be changed during

development – they are costly changes; non-costly changes may be requested even during

implementation;

When it ends: when the client is satisfied with the list, before design begins; as stated above,

some non-functional requirements may be changed during development.

Creation of a release plan (Long-term planning)

ATDD is an iterative software development process based on releases and iterations. A

release is a set of user stories that together define a portion of the program that is useful to the

client (i.e., it has business value). The program being developed encompasses several

releases, so that the final program is ultimately delivered to the client in an incremental

fashion, as each subsequent release adds more and more functionality and business value to

the program.

An iteration is a timeframe measured in weeks (typically a few weeks, no more than two or

three) during which a certain number of user stories is implemented. During an iteration, a

whole release can be implemented, or a release can encompass several iterations (iterations

are blocks of fixed time, whereas releases are sets of user stories). That is the case, for

example, for the first release. It usually takes several iterations to complete, because during

the first iterations you are starting the program from scratch and normally can‟t release

anything of value.

In possession of a prioritized user story list, clients and developers can plan how and in what

order the user stories will be implemented. Such planning is done in two levels. The planning

activity done at the beginning of the project is called long-term planning, and produces a

release plan as a result; this plan contains a description of each release.

Several refined short-term planning activities are done later to refine and detail the time-

blocked activities that occur during an iteration. Short-term planning occurs at the beginning

of each iteration and produces an iteration plan as a result.

The rationale that supports this separation of planning activities in two levels is that it is not

feasible to conceive full upfront detailed planning of activities likely to work out over time,

because the ordering of user stories depends on estimates of time that have a huge variability

on the long-term.

 39

Activity breakdown

Who does it: the client and developers;

When it begins: after an initial user story list has been created;

When it ends: when the client is completely satisfied with the release plan.

Iterations

As soon as the release plan is ready, the first iteration decided upon can be set on course.

Important disclaimer: as we said in the beginning of the chapter, we are not indicating some

common important activities found in software development. Just as a reminder and a

suggestion, however, we find it important to state at this point that, before the first iteration

begins, it is advisable that developers do some more thinking on aspects of software

development that are not change-friendly. We already mentioned architectural design, which

must be dealt with early on not only because it is costly, but also because developers need an

architecture to produce good time estimates. Another costly activity is database modeling, if a

database will be required; the reason is that changing a database over time is usually a very

time-consuming activity. Time invested in these activities beforehand may be beneficial to the

project.

As we said when discussing the release plan, the first release generally takes several

iterations. Subsequent iterations may or may not deliver releases (releases can be partitioned

over several iterations, depending on user story dependencies and time required for

implementation).

At the beginning of each iteration, developers create an iteration plan during short-term

planning. The iteration plan includes details on how the iteration will be executed: it is

basically a breakdown of micro-activities needed to implement each user story along with the

time needed for each one of them (typically a few hours). The iteration itself is time-blocked

(spans a fixed amount of time).

Each iteration encompasses the implementation of some user stories from the list (a complete

release or part of a release). An iteration follows with the definition of a script language that

will be used to create acceptance tests for the user stories chosen; then, the code that will

make the acceptance tests pass is implemented with ATDD techniques; the iteration ends

when all the acceptance tests for such user stories have passed. Acceptance tests for an

iteration must also include tests for non-functional requirements, such as performance. That

way, such requirements can be automatically attended as development progresses. Also

during an iteration, maintenance activities that occur throughout the software development

life cycle take place.

In each iteration, the following steps are performed:

Defining a script language

Since we use in this text EasyAccept as the acceptance-testing tool, we refer here to a script

language – a set of script commands that one writes the acceptance tests with. However, if

you use any other tool to automate your acceptance tests that requires another format, you can

 40

replace “script language” in the title of this subsection with the basic elements that compose

the tests. For example, if you use FiT, you will need to define the table templates (table types,

column labels and disposition) that will be used to create the tests. No matter which tool you

use, this definition of the test vocabulary, so to speak, is always necessary and must not be

done in an off-the-cuff manner – even though the vocabulary definition is generally a simple,

quick and straightforward activity – because ill-thought commands can make tests

cumbersome and thus hinder client review and test maintenance.

In what regards the ATDD process, we need to refine the script language at the beginning of

each iteration, as new features that will be implemented may require new commands to

express the corresponding acceptance tests. However, this activity tends to grow ever shorter

as iterations are completed, because commands already defined for previous user stories are

frequently reused.

Activity breakdown

Who does it: clients and developers (analysts/testers);

When it begins: at the beginning of the iteration, along with the creation of acceptance tests;

When it ends: whenever all acceptance tests for the iteration have been written; moreover, if

new commands must be added/modified, this can be done after implementation has started.

Creating Acceptance Tests

In an ideal world, clients are resourceful beings who are always available to write the

acceptance tests themselves. People have created EasyAccept and other acceptance testing

tools to materialize this idea. However, it most often is the case that the client is not willing to

write acceptance tests himself. It‟s not that clients are not available in the usual agile

processes sense – they are around, clear up doubts, hint on this or that matter; the problem is

that writing acceptance tests is a somewhat burdensome task they don‟t want to embrace (at

least, that‟s the sort of situation we have most often come across).

Clients not writing the acceptance tests themselves, however, is not really that essential for

the process to work, anyway, as long as they basically help with two things: 1. provide

developers with the business rules for a given user story; 2. review the acceptance tests

created by the developers;

The actual creation of the tests can then done by a developer specialized in writing acceptance

tests (i.e., anyone who has read section 2, on acceptance test creation patterns), based on

business rules gathered during talks with the client. The client must review all acceptance

tests. He must read the tests and judge if they really reflect what he wants.

When does this step finish? There is no rule of thumb, but generally, the test writing effort

should be employed to produce tests as thoroughly as possible before implementation (using

some of the acceptance test creation patterns of section 2 can help enforce more complete

tests in a systematic way). Naturally, with implementation under way, new test cases are

created as new business rules are captured or tricky scenarios are brought to attention.

It is general knowledge that tests are inherently incomplete. Tests can prove the existence of a

defect, but not their absence. This is especially true for testing techniques based on examples

 41

(input values entered, expected outputs checked), just like the ones tools for acceptance

testing are based on. At any time, new test cases and scenarios can be found for any preceding

or ongoing user story under implementation (and this is dealt with in a separate continuous

activity called acceptance test maintenance – see subsection below). The final acceptance of

the software is therefore subjective to some extent, depending on the client‟s satisfaction with

the acceptance tests created. Moreover, even when the software is delivered, as it is used, new

user stories and tests are added in future versions. That is why the test creation effort (and

implementation to make tests pass) actually never ends during the project‟s lifecycle.

Activity breakdown

Who does it: most often, developers (analysts/testers), and the tests are reviewed by clients;

new tests can be created during the software lifecycle by any developer (see test maintenance

below);

When it begins: at the beginning of an iteration, along with the definition of the script

language;

When it ends: every user story must have at least one acceptance test; the main effort is done

perhaps during the current iteration, but the test creation continues until the end of the

development lifecycle; at any time new acceptance tests for user stories already implemented

may be added to the test base (see test maintenance, below).

Implementation based on the acceptance tests

In possession of automated acceptance tests, developing software becomes much easier and

gratifying. Developers gain control of the code correctness (a mouse click away), focus on

what must be done, have automatic separation of concerns (business logic independence from

user interfaces is enforced by EasyAccept), and many other advantages that have been

discussed in the preceding chapters.

The approach developers should use for implementing software swiftly is to follow some

simple rules, iterating for each test:

1. Write the simplest code that makes the acceptance test pass – first, code the methods

in the Façade that correspond to the commands in the script, if they don‟t already

exist; then, from the Façade methods, design the program‟s classes, and continue from

this point down to the low-level code.

2. If you think there is an error in an acceptance test, submit it to the client for review

(finding errors in the acceptance tests forces developers to think about business rules

and requirements, promoting discussion and consequently understanding of what

needs to be done);

3. Don‟t change correct code unless you have proved it is wrong by creating a new

acceptance test case that breaks it (and this test must be reviewed by the client), or if

you are refactoring code (see the maintenance activity Refactoring, in a section below)

4. If, to make the acceptance test pass, you need to create untested structures not

viewable or testable by any acceptance test (because it is not a business rule, or a

client‟s concern), first write unit tests for the structure, then code what you need, using

the preceding rules substituting “acceptance” by “unit”, and disregarding references to

the client.

 42

Activity breakdown

Who does it: developers;

When it begins: as soon as the first acceptance tests for the user stories are ready.

When it ends: for the current iteration, when all acceptance tests created for all user stories

(under development and already completed) have passed. Final project is complete when all

acceptance tests for all user stories have passed.
6

Maintenance activities

Despite the fact that at the end of an iteration a number of user stories are implemented, two

maintenance activities forces developers to come back to the code of already “completed”

user stories. Refactoring deals with code quality control and prevention to help cope with

change. Test maintenance, in addition to ensuring and strengthening software correctness, is a

facet of change itself.

Refactoring

Merely writing the simplest code that makes acceptance tests pass in the long run can make

the code messy and even incorrect, if developers do not “see beyond” the tests. As features

are implemented, test runs for preceding user stories may start to fail, new acceptance tests

that must be complied with may become harder to make pass because the existing code is

hard to modify, and especially non-functional tests, such as performance tests, may become a

big issue.

The solution to alleviate this is to refactor code and design, making extensive use of coding

best practices and design patterns (things which will not be discussed in this text, due to lack

of space). Such techniques boost reuse and prepare software for change and additions.

Refactoring is a continuous activity in the process that occurs during iterations. Developers

must always be refactoring, as the need is felt or as a result of specific practices, such as

design review, code review, pair programming, among others. We refrain from suggesting

how you will do code and design quality control, as there are as many techniques as there are

arguments brought up by their respective supporters.

No matter which techniques developers use, however, they must follow these rules:

1. Before refactoring, all tests must pass;

2. After refactoring, all tests must pass.

Activity breakdown

Who does it: developers;

When it begins: in a loose statement, whenever developers feel the need for it (actually, this

activity must be regulated by project management); developers must always refactor;

6
 Of course, there are some other things, like the client being satisfied with the user interface,

but for what we‟re discussing here, the statement is valid.

 43

When it ends: never, over the program‟s lifecycle.

Test Maintenance

This activity involves keeping the quality of acceptance tests, making them more

understandable and accurate. This is accomplished by:

1. Finding additional relevant test cases;

2. Removing irrelevant/repeated test cases;

3. Improving test documentation (in the form of comments inserted in test scripts);

4. Organizing tests (see the section on acceptance test organization patterns).

Test maintenance can be viewed as refactoring for the acceptance tests, with the exception

that it also involves the client, who not only helps providing new test cases or exemplifying

business rules, but also reviews the tests cases created by developers or clarifies their doubts.

Furthermore, when the client uses the software, he will almost inevitably find defects. These

defects are captured either as new tests or as modifications of old tests.

A major risk for the project occurs when broken acceptance tests (those that don‟t correctly

reflect business rules) start to appear in the test database. Thus, it is extremely important that

developers always do three things to cope with this risk:

1. Question tests they think are wrong;

2. Suggest what they think might be the correct test to the client;

3. Only incorporate suggested tests to the test base after the client‟s review.

A famous sentence from Kent Beck, the author of the book Extreme Programming Explained,

states that “untested code is nonexistent code”. Similarly, in the realm of acceptance testing,

we must stick to the following rule: “acceptance tests not reviewed by the client are

nonexistent acceptance tests.”

Step #3 is essential, and must never be overlooked. No project control or software correctness

can be guaranteed without it.

Activity breakdown

Who does it: developers and the client (he mostly does test reviews); a specially designated

developer to manage test maintenance is recommended;

When it begins: as soon as the first test has been written;

When it ends: never, over the program‟s lifecycle.

 44

Section 2 – Acceptance Testing Patterns

In this section, we explain patterns to help you create and organize acceptance tests and use

them effectively when testing the program. Acceptance test creation is done when you are

ready to start developing, i.e., you have a list of user stories, a list of non-functional

requirements, a release plan, etc., as stated in chapter 4, about ATDD. Test organization is

part of the test maintenance activity, which is held during the entire software development

lifecycle. Test usage refers to specific ways developers and clients can interact with the tests

so that they can yield more from the ATDD methodology.

Some of the patterns are general testing patterns, in the sense that they are not specific to

acceptance testing. They represent a framework for thinking about testing or a general

structure that describes how tests should be written. Other patterns are specific to acceptance

testing and/or address particular testing needs.

If you (the reader) are a tester, or have a good testing background (e.g., a developer that uses

TDD and creates unit tests), you may already be familiar with some of the patterns contained

in this section, which are “translations” to an acceptance testing level of well-known testing

patterns. You may, however, feel encouraged to read through them, not only to reinforce what

you already know, but because this compilation is an attempt to provide a common shared

pattern language for clients and developers. Test creation and discussion in software

development flows easily if everyone with an interest in them uses the same terms: “throw in

a Test Flow over here”, “why don‟t we replace that with a Template Tester?”, and so on.

If you are a client, you won't generally create acceptance tests yourself; even so, you should

read this section to gain a testing culture and get a feeling of how software testing is done.

This will help when you are reviewing tests and need to criticize them.

Figure 5.1 depicts the patterns that will be discussed in this section. However, before we

actually begin the pattern discussion, let us explain another program that will be used as an

example, in addition to the poll program.

Alice’s Monopoly Game

Alice comes to Bob once again, as she now wants to play “Monopoly” on her laptop with her

friends. Monopoly is a well-known board game that dates back to the 1930‟s and involves

dice and play money. Players use play money to buy, sell, rent and trade properties depicted

on the board, in a struggle to economically overpower their opponents.

Alice ultimately wants to play Monopoly with her friends over the Internet, but for now a

standalone PC version will do. She thinks that assembling a bunch of people together in front

of a laptop screen and having them take turns throwing virtual dice is a great excuse to justify

even more party time with her pals. Aided by Bob, she comes up with a list of user stories

ranked top to bottom by priority.

 45

Figure 5.1 – Overview of acceptance testing patterns

The list of user stories follows, but don‟t feel forced to read through this list in its entirety

now. You can skim it and report back whenever you feel you need details to understand an

example. If anything, read through the first two user stories to recall how most rules work.

Monopoly is not a difficult program to implement, but it has many little rules that can be

misinterpreted and result in bugs if not dealt with attention. Nevertheless, whoever has played

this board game will probably understand the examples without effort.

User story 1 – Create a New Monopoly Game

Allow the user to create a Monopoly game. The program must ask for the number of players,

which must be between 2 and 8. Then, for each player, a name and a token color must be

provided. Allowed token colors are black, white, red, green, blue, yellow, orange and pink.

When the game begins, all player tokens are placed on position #40 on the board, labeled

“Go!” and receive $1500 in play cash.

User story 2 – Simplified Monopoly Turn

Allow players to take turns throwing dice and following Monopoly rules (listed below). The

order of players is the same as the player entry sequence when creating a game. A turn begins

with a message indicating who the current player is and which actions are available to him.

Initially, the only available actions for players are “throw dice” or “quit”. In subsequent turns,

other actions may become available. The action “quit” is used to quit the game. The program

must show a confirmation message and ask whether the user is sure he wants to quit the

program. The action “throw dice” advances the player‟s token as many positions on the board

as the sum of the faces of the dice (the result of the dice throw and the position the player fell

on must be informed). Depending on where the token falls, many things can occur, according

to the game rules, listed below (this is a simplified set of rules; more rules will be added in

 46

future user stories). If a player falls on a property or railroad with an available title deed, he

buys it automatically, if he has enough money. After all results of a turn are resolved (and

informed on the screen), the player‟s turn ends and the next player‟s turn begins, likewise: a

message is shown indicating who the current player is, which actions are available, and the

program asks the user to choose an action.

Rules for a Monopoly turn:

 The board is made up of 40 places, including the starting point (“Go!”). Mediterranean

Avenue is place number 1, and the starting point is number 40. Place numbers, names,

colors, prices and rent values (when applicable) can be found in Table 5.1:

Pos Place Name Price Rent Pos Place Name Price Rent

1 Mediterranean Avenue 60 2 21 Kentucky Avenue 220 18

2 Community Chest 1 22 Chance 2

3 Baltic Avenue 60 4 23 Indiana Avenue 220 18

4 Income Tax 24 Illinois Avenue 240 20

5 Reading Railroad 200 25 B & O Railroad 200

6 Oriental Avenue 100 6 26 Atlantic Avenue 260 22

7 Chance 1 27 Ventnor Avenue 260 22

8 Vermont Avenue 100 6 28 Water Works 150

9 Connecticut Avenue 120 8 29 Marvin Gardens 280 24

10 Jail – Just Visiting 30 Go to Jail

11 St. Charles Place 140 10 31 Pacific Avenue 300 26

12 Electric Company 150 32 North Carolina Avenue 300 26

13 States Avenue 140 10 33 Community Chest 3

14 Virginia Avenue 160 12 34 Pennsylvania Avenue 320 28

15 Pennsylvania Railroad 200 35 Short Line Railroad 200

16 St. James Place 180 14 36 Chance 3

17 Community Chest 2 37 Park Place 350 35

18 Tennessee Avenue 180 14 38 Luxury Tax

19 New York Avenue 200 16 39 Boardwalk 400 50

20 Free Parking 40 Go!

Table 5.1 – Monopoly Board Positions

 Places on which specific consequences occur are the starting point (“Go!”), properties,

railroads, and taxes, only; all other positions must be treated as Free Parking – nothing

happens;

 Every property is part of a group with an associated color. The four railroads compose a

separate group, as well as the two utilities (Water Works and Electric Company);

 Every player begins the game with $1500;

 Any number of players can be at a same position in a given turn;

 If a player‟s token falls on a property owned by another player, he must pay the owner the

rent value (see table);

 If a player falls on a railroad owned by another player, he must pay the owner the “ride”,

which is calculated by multiplying the value of the dice by a factor that depends on the

number of railroads in possession of the owner: $25 if the owner has a single railroad, $50

if the owner has two railroads, $75 for three, and $100 for all four railroads;

 If a player falls on the Income Tax, he must pay $200 to the bank;

 If a player falls on the Luxury Tax, he must pay $75 to the bank;

 47

 Every time a player falls or passes by the starting point (“Go!”), he gets $200 from the

bank as salary;

 If a player falls on Free Parking or on any of the (for now) unimplemented places, nothing

happens;

 If a player goes bankrupt (his cash falls below 0), he is automatically excluded from the

game, and all of his belongings are returned to the bank and become available to be

bought by other players; debts that exceed what the bankrupted player has been able to

pay are lost; if the cash is exactly 0, the player remains in the game.

 The game ends when a single player remains.

User story 3 – Buying Properties and Railroads

Allow players to choose whether or not they buy properties and railroads. Whenever a

player‟s token falls on a property or railroad without an owner, the player has the option of

buying its title deed for the price indicated in the table. If the player has the money required

for the deal, the program must show a message with the name of the item (property or

railroad), the group color (in the case of a property), its price, the current cash of the player;

then the program asks if the player wants to buy it or not. If the player doesn‟t want to buy the

title deed – or if he doesn‟t have enough money to do so – the deed becomes available to be

bought by another player (including a player who previously rejected the deed) in another

turn.

User story 4 – Jail

Add jail-related rules. A player is sent to jail whenever he falls on the place “Go To Jail” or

throws doubles three times in a row. When a player is in jail, his first subsequent turn begins

with an additional available action: “pay $50”. If he chooses to pay, he gets out of jail – after

throwing dice, the turn occurs as if he weren‟t
i
n jail. If he doesn‟t, his turn only proceeds if

he throws doubles. Otherwise, a message is shown and his turn ends. After the third attempt

(in three subsequent turns) to get out of prison, the player must pay $50. A message is shown,

and a regular turn ensues. Additional rules related to jail are:

 Every time a player throws doubles, he earns an additional turn immediately after the

current one;

 If a player throws doubles three times in a row, the turn immediately ends (before the

token advances) and he is sent to jail without receiving any money;

 If a player falls on the Jail place, nothing happens (he is “Just Visiting”);

 If a player falls on “Go To Jail”, he is sent to jail without earning money and loses his

turn, even if he threw doubles (can‟t throw again);

 A player who is in jail keeps earning rent;

 To be set free from jail, a player must throw doubles. When he does, his token advances

the corresponding number of positions, but the player doesn‟t get an extra turn; the same

applies when paying $50 to get out of jail;

 When his third attempt to get out of jail fails, the players must pay $50 and his token

advances as per the last dice throw.

There are many more user stories for Monopoly, but those four will be the ones we will use in

this text. If you are curious to see the complete set of Monopoly user stories and tests, feel

free to access EasyAccept‟s homepage (http://easyaccept.org).

http://easyaccept.org/

 48

Creating a Script Language

A script language is the set of allowed commands that can be used to write acceptance tests

for a program. In other words, it can be regarded as a vocabulary that specifies the verbs or

words that will be combined to describe acceptance tests. The script language must be

formally defined so that the tests can be automatically interpreted by a testing program, such

as EasyAccept. Even if you don‟t use scripts as the means of doing acceptance testing (for

example, when using FiT, you write tables in HTML files), an equivalent activity that defines

the allowed “building blocks” for the tests, like table templates and diagrams, must exist.

As you recall from the ATDD activity breakdown, the script language definition must be done

before any acceptance test can be written for a given iteration. The activity itself, as you will

see, is pretty straightforward. In fact, the definition of most commands follows directly from a

well-described user story. However, new script commands can – and typically will – be

defined as needed throughout iterations, as clients and test creators (and maintainers) gain

insight on new test cases and on improving current tests.

So, how do you choose the script language commands?

First, let‟s take a look at the types of script commands that one must use to create acceptance

tests.

Types of script commands

There are three fundamental types of script commands: getters, doers and preparers.

Getters are commands that capture a current characteristic or state of a program‟s entity or

element. In a test script, they are typically coupled with an expect built-in command to check

if the returned value corresponds to the expected value. For the sake of standardization,

always name getter commands beginning with “get”. Examples of getter commands are:

getCurrentPlayerMoney

getEmployeeWage employeeName="John Doe"

getCustomerName customerId=01526

Doers are commands that correspond to actions taken in the program‟s business logic.

Generally, a doer is coupled to an actual operation issued by a user when operating the

software, or to a step in the sequence of operations that, when combined, correspond to such a

user action.

Doers modify the state of the program and, as such, return values can be associated with

them.

Thus, doers can either be used standalone in the script, coupled with expect commands or

stored into variables that can be referenced in subsequent points of the script. Examples of

doers:

rollDice firstDieResult=1 secondDieResult=3

payEmployee employeeName="John Doe"

createOrder customerId=01526

Preparers are ancillary commands in the script language. They exist only to serve the purpose

of facilitating the writing of test cases, by setting up special situations that would only be

obtained through a large number of doers.

 49

Consider, for example, that you want to create tests for a simple information system that uses

databases. Instead of having to use several insertSomeDataYouWant commands to create a

sample database and later test if it were correctly setup (and this particular database creation

sequence will probably be used to test several other user stories), you would instead want to

have a command called createSampleDatabase that could be used as a shortcut to the entire

sequence. Additionally, such a command could have an argument to specify a text file with

sample data, so that multiple sample databases could be used.

Another example: in the Monopoly program, it would be tedious to check if a player has gone

bankrupt having to strictly follow only commands users actually issue in the game (doers),

like rolling dice and buying title deeds. To deal with this limitation, one could create a

preparer command called reducePlayerMoneyToOneDollar to adjust a player‟s money low

enough so that in the next move he falls on a tax place that leads him into bankruptcy. This is

actually a test organization pattern, called Summarizer. Observe that neither preparers,

createSampleDatabase nor reducePlayerMoneyToOneDollar, correspond to a useful

action that would be issued in the final working program. They exist only to ease test

creation.

Translating user stories into a script language

Let‟s try to identify commands to create a script language for Alice‟s Monopoly program.

Consider user story 1: “

Allow the user to create a Monopoly game. The program must ask for the number of players,

which must be between 2 and 8. Then, for each player, a name and a token color must be

provided. Allowed token colors are black, white, red, green, blue, yellow, orange and pink.

When the game begins, all player tokens are placed on position #40 on the board, labeled

“Go!” and receive $1500 in play cash.

”

With the user story on hand, you can derive some script commands directly from the

description.

First of all, try to identify verbs that express actions a user would perform when operating the

program. Those are candidate for doers. Moreover, pay especial attention to the key nouns of

the description. They relate to elements of potential testing interest in the program. Generally,

they will be coupled with a getter and/or serve as an argument for a doer.

For user story 1, the key action is to create a game. Then, let a command be called

createGame. What information is needed in order to create a game? As stated in the user

story description, one needs the number of players, the names of the players and the token

colors chosen by each player. These pieces of information must be arguments to the command

createGame when using it in a script. Number of players can be passed as an integer number

(it must be between 2 and 8); player names and token colors are lists of Strings.
7

7
 Currently, EasyAccept does not support the treatment of collections, such as lists of Strings,

passed as arguments to a script command (but may do so in the near future). Lists must be

expressed using a notation of your preference and your Façade must treat them explicitly. We

suggest using the one we adopt in the examples of this text: comma-separated items enclosed

in curly brackets. In appendix 1 you will find a discussion on unit tests and how they fit into

an ATDD approach. Code provided in this appendix can be used to parse lists of Strings such

as the ones used in this text‟s examples.

 50

The command definition then becomes:

createGame numberOfPlayers=<int> playerNames=<String> tokenColors=<String>

From the user story description, we see that no other user action is described. The user story

basically consists in player data being entered and the program setting up a game

automatically. However, to fully test it, one needs a series of getters, as the description

mentions lots of key nouns.

Key nouns found in the user story description are number of players, player name, token

color, position on the board, label of a board position (place) and cash. The first three nouns

are arguments when creating a game, the remaining are not. They all represent attributes of

testing interest in the script, except perhaps for player names, which can be tested implicitly if

you use them as primary keys for a player – they are tested when you use them as arguments

in the script. To fully check if a game was created successfully, one needs to check if all the

above-mentioned characteristics result as expected. Thus, we need getters for them. The

resulting commands are:

<int> getNumberOfPlayers

<String> getTokenColor playerName=<String>

<int> getPlayerPosition playerName=<String>

<int> getPlayerCash playerName=<String>

<String> getPlaceLabel position=<int>

Notice that getters always have a return value, indicated at the beginning of each line. Also

observe that every “entity” of the problem domain that needs to be tested (i.e., every Business

Object, BO for short) has an associated primary key, which must be given as an argument to a

getter. In the case of the BOs player and board place, their primary keys are a player‟s name

and the position (number) of a place on the board.

For this particular user story, there is no immediate need of a preparer command. This is not

be the case for user story 2, though. Let‟s briefly consider this user story now.

Despite the fact that user story 2 has a long description, you will notice that the only real

doers (actions a user of the program issues) are rolling dice and quitting the program. Even

though the end program user simply rolls dice and random face numbers result, the test

command that Bob creates receives each die‟s value as arguments in order to test the program

in a controlled fashion. Each die value must be passed individually as an argument because

there are rules that depend on comparing them. As for the rest of the description, it merely

discusses consequences of a player‟s dice throw, e.g., a player automatically buys deeds when

his token falls on a property or railroad place, the player is automatically excluded from the

game when he goes bankrupt, etc. Thus, Bob need only define the following doer commands

for user story 2:

rollDice firstDieResult=<int> secondDieResult=<int>

quitProgram

As for the getters, you may anticipate that a good number of them will be needed. Testing

user story 2 involves checking that a board was correctly set up with the appropriate place

labels, colors, groups, prices and rents, when applicable. There will also be tests for each one

of the business rules included in the description: testing if a player earns the correct salary

 51

when cycling the board; testing if a player pays the correct rent or ride depending on his and

other players‟ status (who owns which deeds or railroads); testing if a player goes bankrupt

and is excluded from the game when he runs out of money, and so on. For all those tests, Bob

will need to use new getters in addition to those that are already part of the script language.

They are listed below:

<String> getPlaceName boardPosition=<int>

<String> getPlaceGroup boardPosition=<int>

<int> getPlacePrice boardPosition=<int>

<String> getPlaceOwner boardPosition=<int>

<int> getPropertyRent boardPosition=<int>

<String> getCurrentPlayer

<String> getPlayerDeeds playerName=<String>

<String> getPlaceOwner playerName=<String>

The commands defined so far are enough for Bob to test user stories 1 and 2, as they

encompass all actions a user of the program issues and all pertaining queries needed to check

the program‟s state.

However, as you may have anticipated, the tests for user story 2 can to be cumbersome, to say

the least. Suppose that Bob wanted to test that a player really goes bankrupt when he runs out

of money. With the doers createGame and rollDice alone, Bob would have to: start a given

game (all players begin with $1500), issue a series of rollDice commands (one for each turn

of each of the players) making players fall on specific places to make a given player slowly

lose his money (say, by always falling on income taxes or paying rent to other players), and

finally checking what he wanted: that a player went bankrupt and was removed from the

game (see the test script below).

testing for Alice’s bankruptcy; Bob simply cycles through corners,

Alice repeatedly falls on taxes (income and luxury); thus, his cash

decreases $75 per cycle

createGame numberOfPlayers=2 playerNames={Alice,Bob}

playerTokens={white,black}

expect 2 getNumberOfPlayers

Alice and Bob begin at position 40 (Go) with $1500; Alice plays first,

falls

on Income Tax and pays $200

rollDice firstDieResult=2 secondDieResult=2

rollDice firstDieResult=5 secondDieResult=5

rollDice firstDieResult=3 secondDieResult=3

rollDice firstDieResult=5 secondDieResult=5

Alice is now on Free Parking

rollDice firstDieResult=5 secondDieResult=5

rollDice firstDieResult=5 secondDieResult=5

rollDice firstDieResult=5 secondDieResult=5

rollDice firstDieResult=5 secondDieResult=5

Alice falls on Luxury Tax and pays $75

rollDice firstDieResult=4 secondDieResult=4

rollDice firstDieResult=5 secondDieResult=5

Alice falls on Income Tax and pays $200, after receiving salary ($200)

rollDice firstDieResult=3 secondDieResult=3

...

after 10 cycles, we come to a point where Alice is on the verge of

becoming bankrupt; the final step we needed to test is

expect 2 getNumberOfPlayers

expect false playerIsBankrupt playerName="Alice"

rollDice firstDieResult=4 secondDieResult=4

expect 1 getNumberOfPlayers

 52

expect true playerIsBankrupt playerName="Alice"

expect false playerIsBankrupt playerName="Bob"

Further down in the script, Bob wants to test the “four railroads” rule: when a player owns all

four railroads, other players must pay him $100 times the combined dice result when they fall

on any of his railroads. To create this test, Bob would have to set up a sequence of turns being

taken by players so that the same player buys all railroads and then other players fall on his

railroads. Using such an approach, this and the preceding test cases would be really long-

winded, hard to understand and maintain.

That‟s when preparers come in handy. With preparers, Bob can find shortcuts in the usual

workflow of a program‟s execution and set up scenarios for the specific test cases he needs.

He comes up with two such commands:

setPlayerPosition playerName=<String> position=<int>

setPlayerCash playerName=<String> cash=<int>

Compare how the test sequence for a player bankrupt becomes cleaner now that preparers

were introduced in the script language:

Testing for Alice’s bankruptcy

createGame numberOfPlayers=2 playerNames={Alice,Bob}

playerTokens={white,black}

expect 2 getNumberOfPlayers

setPlayerCash playerName="Alice" cash=100

rollDice firstDieResult=2 secondDieResult=2

expect 1 getNumberOfPlayers

expect true playerIsBankrupt playerName="Alice"

For the “four railroads” test, yet another preparer command could be devised to make the test

even cleaner: a command that gives a deed to a player. This command would avoid a player‟s

need to fall on each of the railroads to buy them automatically.

Defining preparers is meant for the tester‟s convenience. The rule of thumb is to define as

many preparers as it takes to make tests understandable and easy to maintain. There is a

tradeoff to explore in this area because too many specific preparers, while they may make a

test script more readable, may make them too complicated to maintain. The script below is

easy to understand, but most of the commands are not usable in most tests.

createGame numberOfPlayers=2 playerNames={Alice,Bob}

tokenColors={blue,yellow}

giveAllRailRoadsToPlayer playerName=Alice

goToNextRailroad playerName=Bob

expect 1000 getPlayerCash playerName=Bob

goToRailroadWithMaximumDiceResult playerName=Bob

...

Now Bob and Alice have defined a working set of commands to write tests for the first two

user stories. When discussing the patterns Test Flow and Creator, you will see how to use

these some of the commands in scripts that test aspects of this user story. If you want to check

all tests for Monopoly, check out EasyAccept‟s homepage (http://easyaccept.org).

http://easyaccept.org/

 53

Test Flow

Once you have defined a script language with the commands you need to test a user story,

you are ready to begin writing the actual tests. So, how do you begin?

This and the next three patterns are what can be regarded as general testing patterns.

Whenever you are creating a test (an acceptance test, unit test or any other kind of test), you

will find yourself applying one of these patterns, even if you don‟t realize it. These patterns,

for instance, have been used in chapter 3, when Bob wrote tests for Alice‟s poll program.

They will be used to test Alice‟s Monopoly program, too.

The first of these patterns is used when you want to verify that a given software characteristic

results as expected after issuing a given action in a particular situation – a common reason for

writing a test. This “results as expected” statement could be either “the program produces the

correct output” or “a program error occurs”.

The basic framework is to use a three-step sequence:

(1) build a scenario that puts the program into the initial state you need for the test;

(2) operate the program using the desired action; and finally

(3) check if the new program state results as you expected.

Take the following test from Alice‟s poll program:

 1 clearSystemData

 2 poll1=createPoll name="Do you like apples?" answers={yes,no}

 3 vote poll=${poll1} answer=yes

 4 expect 1 getNumberOfVotes poll=${poll1} answer=yes

 5 expect 0 getNumberOfVotes poll=${poll1} answer=no

This is a simple test that checks if voting for a given answer (action) results in a vote being

counted for the desired answer and not for the other answers. Lines 1 and 2 represent the build

phase – creating a poll with the desired answers – that sets the stage for the desired operation;

line 3 alone contains the operation: casting a vote for the answer “yes”; and lines 4 and 5 do

the checking: there must be one vote for the “yes” answer and zero votes for the “no” answer.

Another example, from Alice‟s Monopoly program: testing if a player has gone bankrupt

using the preparer setPlayerCash:

 1 # Testing for Alice’s bankruptcy

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 expect 2 getNumberOfPlayers

 5 setPlayerCash playerName="Alice" cash=100

 6 rollDice firstDieResult=2 secondDieResult=2

 7 expect 1 getNumberOfPlayers

 8 expect true playerIsBankrupt playerName="Alice"

 9 expect false playerIsBankrupt playerName="Bob"

 54

The build phase is found from lines 2 to 5 – creating a game and setting a player with low

cash; the operation consists of a rollDice in line 6 (so that the player falls on income tax and

loses all his remaining money), and lines 7 to 9 convey the check (only one player should be

left in the game, and this player should be Alice).

Note that the build phase may also contain checks, like in line 4. Before checking if one

player will remain after the other one is removed from the game, we must check if a game

with two players was created in the first place. This was necessary in this particular test

because the creation of a game is still untested. If a game creation were already tested, line 4

would not be necessary (and, in fact, undesired). Let‟s take this for granted in the next

example:

 1 # checking if the luxury tax of a Monopoly game takes $75 from a player
 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 # place Alice on "Jail: Just Visiting" and set her with $1000

 5 setPlayerCash playerName="Alice" cash=1000

 6 setPlayerPosition playerName="Alice" position=30

 7 # doer: make Alice fall on luxury tax

 8 rollDice firstDieResult=4 secondDieResult=4

 9 # check: Alice should have lost $75

10 expect 925 getPlayerMoney playerName="Alice"

Observe that the build phase is generally larger than the operate phase (which generally

consists of a single line) and the check phase (whose size depends on the number of

characteristics you want to check). If, instead of checking property values, you want to check

if an error occurs when operating the program, the operate and check phases are combined in

a single line. See below, for example, a test for user story 4 of Alice‟s Monopoly game.

When a player is sent to jail, he becomes free when he throws a double in one of his next

turns. Alternatively, he can pay to get out of jail or use an optional “Get Out of Jail” card, if

he has one. In the test below, we use a preparer command, sendToJail, to send Alice to jail.

When her turn comes, she won‟t have the option of using a “Get Out of Jail” card, since she

doesn‟t own one.

 1 # error when trying to use a jail card

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 # send Alice to Jail

 5 sendToJail playerName="Alice"

 6 # operate and build phase combined: error when operating: using card

 7 expectError "Player doesn’t have a jail card" useJailCard

The build phase consists of lines 2 to 5, and the operate and check phases are combined in

line 7.

Even when a test is made up of many lines, with many commands, the three-step sequence

should be easy to identify. If not, this may be the sign of a bad test: one that tests many things

simultaneously or one that is too verbose or redundant. Later on, we will present two patterns

that help cope with those bad tests: Single Tester, which identifies and separates multiple

combined tests and Summarizer, which deals with test redundancy.

 55

Pattern outline

Context: you need to verify that a given software property results as expected after a given

action.

Problem: the lack of a basic structured test sequence gives rise to tests that are complicated,

hard to understand and maintain.

Forces: clients don't have a testing background and need an approachable way to understand

tests without much effort. Furthermore, as reviewers of acceptance tests, clients must gain a

testing culture to understand how software testing is done.

Solution: Test Flow provides the basic structure for an acceptance test, consisting of three

steps. The first step is to build a scenario – a particular state of software taking into account

the elements you want to test. In this step you find shortcuts in the logic flow of the program

to the scenario you want to test. Once the scenario is built, you perform the specific actions

that modify the current state of the program to the state you want to check. Finally, you check

if the program state has resulted as expected, comparing values of properties of interest to

values you want. If the expected outcome of the action is an error, the check step is frequently

coupled with the operation step.

Rationale: the 3 steps sequence is easy to remember, apply and identify when reading a test

script. This helps alleviate the learning curve of reviewing acceptance tests for the clients.

 56

Creator and Destroyer

Creator and Destroyer are patterns used in the common situation of “creating” and

“destroying” Business Objects – software elements of business interest. Every time you

introduce a Business Object in a program, you must test it to make sure it was successfully

created. Likewise, when you are done using it, you must make sure the process of destruction

was completed adequately.

Many times when testing software, you need to create and destroy multiple BOs. If these

operations aren‟t tested, a potential bug in them will interfere with many correct tests.

Furthermore, if you don‟t use a systematic approach to test the creation and destruction of

BOs, a number of redundant or unnecessary tests may appear scattered throughout your test

script.

Creator and Destroyer provide a simple, short and direct one-shot test sequence for creating

and destroying BOs. You need a Creator for every script command that creates a BO, and a

Destroyer for every command that destroys one.

This is the profile for Creator: for every command that creates a BO:

(1) check that the BO doesn‟t exist;

(2) create the BO using the script command you defined;

(3) test if the BO was correctly created;

(4) make sure the same BO can‟t be created again (if applicable)

In order to accomplish the first step, expect an error when trying to access the given BO with

any of its getters. Step 3 involves checking all pertinent properties of the BO that define it as

being correctly created. Let‟s see an example:

 1 # Using Creator to test an employee's creation

 2 expectError "Employee does not exist" \

 3 getEmployeeSalary employeeId=1434

 4 createEmployee id=1434 employeeName="John Doe" salary=1500

 5 expectError "Employee with this id already exists" \

 6 createEmployee id=1434 employeeName="John Doe" salary=1500

 7 expect "John Doe" getEmployeeName employeeId=1434

 8 expect 1500 getEmployeeSalary employeeId=1434

In this example, an employee with an id of 1434, a name John Doe and a salary of $1500 is

created. The employee‟s id is the BO‟s primary key, so his name and salary are the pertinent

properties that need to be checked. The command getEmployeeSalary is used prior to

creation to assert that an error is thrown. As a primary key, no other employees can be created

with the same id. This is reflected in the test comprised in lines 5 and 6, which makes up for

step 4.

Suppose you had defined an additional command to create an employee. Say, a command in

which, along with an id, a name and a salary, another employee data (e.g., birth date) was

passed as an argument. This other command would need a Creator test, too, in addition to the

Creator used in the example above.

 57

When you use an internal unique identifier as the primary key of a BO (i.e., when you apply

the pattern Business Object Reference), you can‟t tell the key value beforehand. In this case,

you can refer to the EasyAccept variable that you‟ll use, like in the example below, taken

from Alice‟s Poll program:

 1 # using Creator to test the creation of a poll

 2 expectError "Poll does not exist" getPollName poll=${poll1}

 3 poll1=createPoll name="Do you like apples?" answers={yes,no}

 4 expect "Do you like apples?" getPollName poll=${poll1}

 5 expect "{yes,no}" getPollAnswers poll=${poll1}

Observe that step 3 is longer in this case, because to properly test if a poll was created, we

need to check its name and its answers (in lines 4 and 5), given that the primary key is an

assigned identifier. Also observe that this Creator has no step 4. You can always create a new

poll, even if another one with the same name and answers already exists in the system.

Now let‟s analyze another example, taken from Monopoly:

 1 # using Creator to test a Monopoly game creation

 2 expectError "game does not exist" getNumberOfPlayers

 3 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 4 playerTokens={white,black}

 5 expect 2 getNumberOfPlayers

 6 expect "{Alice,Bob}" getPlayerNames

 7 expect "{white,black}" getPlayerTokens

 8 expectError "a game already exists" createGame numberOfPlayers=2 \

 9 playerNames={John,Mary}playerTokens={blue,green}

In the case of Monopoly, no primary keys are necessary, as only one game can be created at a

time. That‟s why even a completely different game couldn‟t be created in lines 8 and 9.

After you‟ve applied the Creator pattern, you won‟t need to be checking BO creation

properties in other parts of the script, in the middle of tests for other purposes. One important

remark follows. Note that the mere application of a Creator pattern does not guarantee that

the creation of a BO is fully tested, because it says nothing about error situations that should

be raised when trying to create a BO. That‟s why you should also apply the Command

Errors pattern for every creation command.

Now let‟s see how to test the destruction of a BO. See the profile of the Destroyer pattern: for

every command that destroys a BO:

(1) make sure the BO exists (optional);

(2) destroy the BO using the command you defined;

(3) check that it doesn‟t exist anymore;

(4) check that it can‟t be destroyed again

Let‟s use the same examples we did for Creator.

 1 # Using Destroyer to test an employee's removal

 2 expect 1500 getEmployeeSalary employeeId=1434

 3 removeEmployee employeeId=1434

 4 expectError "Employee does not exist" \

 5 getEmployeeSalary employeeId=1434

 58

 6 expectError "Employee does not exist" \

 7 removeEmployee employeeId=1434

Line 2 alone contains the first step, checking that the employee with the id 1434 exists.

Depending on the point in the script where you apply the Destroyer, this first step may be

optional. For example, if the Destroyer is placed right after the corresponding Creator the

first step is unnecessary. Line 3 contains the destructor command, removeEmployee.

Checking that this employee was actually removed is accomplished by the command found

on lines 4 and 5. Finally, lines 6 and 7 check that employee 1434 can no longer be removed.

The next example shows a Destroyer being applied to the poll program, considering that

poll1 has previously been created in the script and checked with a Creator, so that the first

step of Destroyer is not needed.

 1 # using Destroyer to test the destruction of a poll

 2 destroyPoll poll=${poll1}

 3 expectError "Poll does not exist" getPollName poll=${poll1}

 4 expectError "Poll does not exist" destroyPoll poll=${poll1}

Since, in Monopoly, only one game can exist at a time, we also take for granted that a

functional game has previously been created in a script.

 1 # using Destroyer to test a Monopoly game destruction

 2 endGame

 3 expect true gameIsOver

 4 expectError "Game is already over" endGame

Note how we‟ve taken a different approach for step 3: we used a command that tells if a game

is over, but we could have used an expectError coupled with a rollDice instead.

Make a habit of systematically using Creator and a Destroyer for every creation and

destruction operations on a BO. Separate them from the rest of the script, and don‟t forget to

use Command Errors on each of these operations. Creator and Destroyer alone don‟t

guarantee that the operations are fully tested.

Pattern outline

Context: you need to test if a Business Object has been successfully created or removed in the

program; those are common operations in test scripts.

Problem: the lack of a systematic repeatable sequence to test Business Object creation and

destruction hinders test understanding and may leave these operations incompletely tested.

Forces: clients don't have a testing background and need an approachable way to understand

tests without much effort. Furthermore, clients must gain a testing culture.

Solution: whenever you are creating Business Object (a new client, a new player, a new

purchase order) that will be used in a test, first make sure that it doesn't exist (expecting an

error), then create it, make sure it exists and finally check that it can no longer be created (if

duplicates are not allowed). When testing the Business Object‟s destruction, first check that it

 59

exists; then destroy it, check that it doesn't exist, and finally check that you can no longer

remove it.

Rationale: this is a clear-cut, easy-to-follow sequence of steps that contains all of the

important tests for business object creation and destruction.

Related Patterns: Creator is often used in conjunction with Business Object Reference.

 60

Command Errors

Testing is an exercise in active search for the unusual, the strange, and the abnormal. It

involves much more identifying the situations where a program must not work properly than

those where everything should work fine. In ATDD, we employ user-defined commands to do

so. However, an important catch of the approach is that the commands can be themselves

source of bugs.

When you create a new command to use in a test script, you must make sure developers

implement it correctly. Otherwise, bugs can be inadvertently introduced in the program due to

typos or other errors in the tests.

What should you do? Apply a systematic approach and make it a habit. Every time you create

a new command, open a script and type right away a series of tests for the command. Think

about what the command does, its scope, its limitations, and contexts or situations where it

should not be used. Generally, the tests will consist in error declarations using expectError

for the illegal uses, because the normal use will come with the regular application of the

command in the test script.

Let‟s see a clarifying example. In the simple employee management program, suppose we had

just devised a new command, called setEmployeeSalary, which takes an employee id as an

argument and changes the employee‟s salary. Suppose you didn‟t use Command Errors and

the command is left untested. An inattentive developer didn‟t bother coding for, say, a

negative salary as invalid. Some days later, hours are lost in an attempt to resolve a bug that

ultimately lied in a typo: somewhere in the script, setEmployeeSalary was used with a

negative salary, which resulted in a test further down in the script persistently breaking.

An error should have been thrown when a negative salary was issued. This would break the

test with the typo, had the developer coded it. But to ensure he had coded for this error, an

explicit test indicating it should appear in the script.

This is what Command Errors advocates. The best moment to code errors for a command is

when you create it, when your mind is fresh with ideas on how you will use it. An additional

advantage of the pattern is that thinking about a newly created command‟s limitations often

makes you find useful tests for the program under test. In the example, a negative salary

should not be allowed in the underlying program.

For setEmployeeSalary, the following tests pack up the initial set of command errors.

 1 expectError "employee doesn't exist" setEmployeeSalary \

 2 employeeName="Nonexistent John"

 3 expectError "salary must be positive" setEmployeeSalary \

 4 employeeName="John Doe" salary=-15

 5 expectError "salary must be positive" setEmployeeSalary \

 6 employeeName="John Doe" salary=0

The tests check for three error situations. The first case (lines 1 an 2) is when you try to set

the salary for a nonexistent employee. The second and third cases (lines 3 to 6) occur due to

invalid salaries. Note that these errors apply for illegal uses of the command within a test

 61

script, but also correspond to illegal uses of the function of changing a salary in the final

program. Naturally, a number of other illegal salaries could apply depending on specific rules

that are incorporated later in the script.

A useful habit that helps better organize test scripts is to group the command errors in a

separate section. This improves readability and helps pinpoint test bugs when running the

scripts. In chapter 3, Bob used Command Errors when writing tests for the first user story of

the poll program and does just that. In this user story, he devised the command createPoll

and two getters, getPollName and getPollAnswers. In a separate section defined in the final

lines of the script, he includes tests that cover illegal uses of these commands. See below an

excerpt from the script:

10 # using the pattern Command Errors on the command createPoll

11 expectError "Poll must have a name" createPoll name="" answers={yes,no}

12 expectError "Poll must have at least two answers" \

13 createPoll name="Do you like apples" answers={yes}

14 expectError "Poll must have at least two answers" \

15 createPoll name="Do you like apples" answers={}

16 expectError "Poll must have at least two answers" \

17 createPoll name="Do you like apples" answers=""

18 # Command Errors on the getters

19 expectError "Poll does not exist" getPollName poll=abc

20 expectError "Poll does not exist" getPollAnswers poll=abc

Also observe from this example that testing a command begins by validating the arguments it

receives. The program under test should throw an error every time one tries to use a command

with an invalid argument. In the case of createPoll, invalid arguments are an empty name or

a number of answers less than 2, a business rule. The getters, in their turn, must throw errors

whenever nonexistent polls are passed as arguments.

Pattern outline

Context: you have created a new command to incorporate in the script language and will start

writing tests with it. The new commands can be used in the wrong way.

Problem: addition of new commands involves interacting with new, untested software

operations that can be the source of bugs.

Forces: test coverage is difficult to attain if you don‟t approach testing systematically; when

thinking of a new command to add to the script language, you often think about tests that will

involve this command, including anomalous uses; the program under test should be able to

identify a misuse of its operations and may even give clues about the problem cause

Solution: every time you create a new command to incorporate in the script language, you

must systematically write tests that devise a "fire curtain" of error tests that exhaust the

possibilities of errors: think about the command‟s scope, limits, restrictions and invalid

situations that it could cause. Additionally, put the command error testing in a separate

section of the script for clarity.

Rationale: writing tests to cover misuses of a command early saves debugging time later and

helps finding useful tests.

 62

Boundary Checker

“Tests prove the existence of bugs, but not their absence.” This famous quotation from Edsger

Dijkstra is a most discouraging truth of software testing. You can only prove a program is

100% correct if you exhaust all possibilities of combinations of data entered and operations

issued in all scenarios (or if you mathematically guarantee that this holds). This is always

very difficult if not impossible to do even if you use automated generation of tests, let alone

involving clients to verify test cases.

Other than in real-time systems or programs that need close to perfect reliability, this

obsessive-compulsive approach is fortunately not generally necessary in most information

systems.

What is done in practice is to use testing by example. What does this mean? In most cases,

you only need a single test (example) to represent a huge set of invalid operations. For

example, take the command setEmployeeSalary. A single line is enough to state that a

negative salary is invalid, using a single value, e.g., -1.

 expectError "must be positive" setEmployeeSalary \
 employeeName="John Doe" salary=-1

You (the tester) don‟t need to repeat the same line over and over again to wear out other

orders of magnitude of negative salaries, because the developer can get the point. He will

simply write down a condition of salary < 0 throwing an error in the code. This is a rather

simple example, of course, but it makes the point: give one example for every group of tests.

This rule of giving examples applies particularly well to the case when you need to test ranges

of values. The pattern Boundary Checker states that, when you need to test ranges of values,

you need to give examples of the boundaries. If the range has a minimum value, demarcate

the boundary by giving an example with such a minimum value being accepted, and an

example of the next lower value throwing an error. Do the same for the maximum value.

Let‟s analyze the pattern applied to the first user story of Monopoly. It states that a Monopoly

game must accept a number of players between 2 and 8. How do you test if the program

accepts the range correctly? According to Boundary Checker, you need four tests: that a

game with 2 players is accepted, that a game with 8 players is accepted, and that neither a

game with 1 nor with 9 players is accepted. The excerpt from the script follows:

 1 expectError "Too few players" createGame \

 2 numberOfPlayers=1 playerNames={John Doe} tokenColors={black}

 3 expectError "Too many players" createGame \

 4 numberOfPlayers=9 playerNames={a,b,c,d,e,f,g,h,i}\

 5 tokenColors={black,white,green,red,blue,yellow,brown,gray,pink}

 6 createGame numberOfPlayers=2 \

 7 playerNames="{John Doe,Mary Donna}" tokenColors={black,white}

 8 finishGame

 9 createGame numberOfPlayers=8 \

10 playerNames={a,b,c,d,e,f,g,h}\

11 tokenColors={black,white,green,red,blue,yellow,brown,gray}

 63

Lines from 1 to 5 represent the tests for the outward limits of the range, the ones that need to

throw errors. Lines 6 to 11 make sure inward limits are accepted. At this point, you might

think: do you really need to place lines 6 and 7 here? After all, these lines will be repeated in

the Creator for a Monopoly game. Thinking even further: do you need to place lines 1 to 5

here? They will also be part of the Command Errors for createGame.

Well, this is a concern of the most painful aspect of ATDD: organizing tests. There is a

tradeoff between redundancy and understandability to explore in acceptance testing, because

of the involvement of the client. Even if the tests indicated are repeated elsewhere in the

script, it is undoubtedly clearer if they are kept together.

Later in this section, we will see some patterns that help cope with test organization. For now,

suffice it to say that the test writer‟s convenience will dictate whether or not he will use

redundant tests.

As you may have noticed, Boundary Checker is a general testing pattern that can be used in

conjunction with other patterns. In the Monopoly example above, you saw how it helps find

command errors when thinking about a new command.

When you need to check limits for floating point values that are an output of the program‟s

execution, the application of Boundary Checker can be simplified, because EasyAccept has

a built-in command for this function: expectWithin. The range can be stated as a precision

around an expected value, and limit inward and outward values are automatically taken care

of upon running the script. In the line below, the employee‟s salary must have the value

expected ($2345.67) with a precision of 1 cent.

expectWithin .01 2345.67 getSalary employee=employee1

Pattern outline

Context: you need to test a business object or program flow that has limits (ranges or sets of

allowed values).

Problem: unchecked limits are common sources of software bugs and the lack of a systematic

approach to testing limits leaves room for unchecked limits.

Forces: testing by example, although not necessarily complete, is generally enough when it

comes to communicating valid and invalid situations to the developer. From the special cases,

the developer can generalize the working code.

Solution: acceptance testing involves giving “examples” of valid and invalid software

operations or business object‟s properties. When writing tests, always demarcate precisely

limits by giving examples of inner and outer bounds. Make sure values immediately out of

bounds throw errors and inbound values don't.

Rationale: in general, tests for the immediate limits are enough to indicate to the developer

that further values aren‟t acceptable, even if the tests don‟t explicitly list them all.

Related patterns: you often use Boundary Checker in conjunction with Command Errors to

increase test coverage.

 64

Table Tester

One of the drawbacks of scripted testing is the verbosity that follows in two situations: when

testing long-winded sequences of data, and when testing multiple related examples that use

the same structure.

See below an example of a long-winded sequence of data. In Monopoly‟s user story 2, Bob

needs to test if the board was correctly set up. It is composed of 40 places, each of which has

a bunch of characteristics. This is not a case of a range of values that can be summarized with

an example, so each one of the places must be tested for every characteristic.

 1 expect "Mediterranean Avenue" getPlaceName placeID=1

 2 expect "purple" getPlaceGroup placeID=1

 3 expect "bank" getPlaceOwner placeID=1

 4 expect 2 getPropertyRent placeID=1

 5 expect 60 getPlacePrice placeID=1

 6 expect "Community Chest 1" getPlaceName placeID=2

 7 expect "chest" getPlaceGroup placeID=2

 8 expectError "This place can't be owned" getPlaceOwner placeID=2

 9 expectError "This place doesn't have a rent" getPropertyRent placeID=2

10 expectError "This place can't be sold" getPlacePrice placeID=2

11 expect "Baltic Avenue" getPlaceName placeID=3

12 expect "purple" getPlaceGroup placeID=3

13 expect "bank" getPlaceOwner placeID=3

14 expect 4 getPropertyRent placeID=3

15 expect 60 getPlacePrice placeID=3

…

For every place, a total of five lines are used to test its characteristics: name, group (if

applicable), owner, rent (if the place is a property), and price (if it can be sold). A total of 200

lines are necessary to test all 40 places. This long-winded list is cumbersome to look at and

analyze. However, if you translate it into a table, see how much more readable the data

becomes, with one line per place (only the first 3 lines are shown, for simplicity, but you may

refer to the complete table in the beginning of this section):

Pos Name Group Owner Rent Price

1 Mediterranean Avenue Purple Bank 2 60

2 Community Chest 1 Chest !"This place

can‟t be

owned"

!"This place

doesn‟t have

a rent”

!“This place

can‟t be

sold”

3 Baltic Avenue Purple Bank 4 60

Cells beginning with an exclamation mark mean that an error with the message that follows is

expected. This is equivalent to the expectError command in the script.

Let‟s see another example, taken from the employee management program. Suppose that the

client has a business rule in the way of a somewhat complicated formula. It calculates an

employee‟s wage based on a number of variables, like number of children, amount of sales

and social security due.

 65

The client states the rule as follows: “employees are paid a base salary plus 1% of his sales in

the month minus the social security, which is a base value times the number of members of

his family”. The way formulas are tested is through examples. The examples must not be

redundant, but must be comprehensive, with one example for every isolated combination of

variables.

Due to lack of space, we won‟t present here the full list of examples, but let‟s analyze two of

them to compare the tabular vs. sequential approaches:

“if the salary is $1500, employee sells $50000, and has 2 kids, with a base social security

value of $20, we owe him $1940”

“if the salary is $1000, employee sells $20000, and has 3 kids, with a base social security

value of $20, we owe him $112”

Presenting the examples in a tabular format, we have this:

employeeName Salary maritalStatus numberOfKids socialSecurity Sells Wage

Employee1 1500 Married 2 20 50000 1940

Employee2 1000 Married 3 20 20000 1120

The final column expresses the wage due to the combination of characteristics for the

employee described in the line. If the examples were translated into a sequential script, it

would look like:

 1 # first example

 2 id1=createEmployee employeeName="Employee1" \

 3 salary=1500 maritalStatus=married numberOfKids=2 socialSecurity=20

 4 # for a more typical scenario, there could be multiple

 5 # employeeSale, but let's say the total was from a single sale

 6 employeeSale id=${id1} saleValue=50000 date=05/02/06

 7 expect 1940 calculateEmployeeWage employee=${id1}

 8 # second example

 9 id2=createEmployee employeeName="Employee2" \

10 salary=1000 maritalStatus=married numberOfKids=3 socialSecurity=20

11 # for a more typical scenario, there could be multiple employeeSells,

12 # but let's say the total was from a single sale

13 employeeSale saleValue=20000 date=05/02/06

14 expect 1120 calculateEmployeeWage employee=${id2}

That is, you create an employee with the characteristics you want to test, and then compare

the expected wage with the one calculated by the program.

These are examples of tests that are inherently tabular. They take advantage of a tabular

format of presentation which is the format used in tabular acceptance testing tools, like FiT.

However, how do you cope with tabular tests in scripts? EasyAccept provides a way of

describing tabular data through the built-in command processThisLoop. Using this

command, you can describe a fragment of a script using variables, and then substitute the

variables with cell values on a table. For the first example of the examples, the script using

processThisLoop is this:

 66

 1 processThisLoop

 2 expect ${placeName} getPlaceName placeID=${placeId}

 3 expect ${placeGroup} getPlaceGroup placeID=${placeId}

 4 expect ${placeOwner} getPlaceOwner placeID=${placeId}

 5 expect ${placeRent} getPropertyRent placeID=${placeId}

 6 expect ${placePrice} getPlacePrice placeID=${placeId}

 7 forThisData placeId placeName placeGroup placeOwner placeRent placePrice

 8 1 "Mediterranean Avenue" purple bank 2 60

 9 2 "Community Chest 1" chest !"Can't be owned" !"Doesn't have a rent" \

10 !"Can't be sold"

11 3 "Baltic Avenue" purple bank 4 60

12 4 "Income Tax" tax !"Can't be owned" !"Doesn't have a rent" \

13 !"Can't be sold"

14 5 "Reading Railroad" railroad bank !"Doesn't have a rent" 200

15 6 "Oriental Avenue" "light blue" bank 6 100

16 endLoop

The syntax of processThisLoop is general and can be applied to virtually any repeatable

script fragment. The first 6 lines of the example describe the script fragment that will be

looped. In this case, a sequence of 5 expects, each one for one of the place characteristics that

need be tested. Line 7, which begins with the reserved word forThisData, represents the

headers of the table, with the sequence of columns that must match the value of cells. Lines 8

through 15 contain the lines of the table, each line with a number of cells corresponding to the

headers. If, in a cell, an error is expected instead of a value, the character “!” must be used,

following with the expected error message enclosed in “”.

 1 processThisLoop

 2 ${id}=createEmployee employeeName=${name} salary=${salary} \

 3 maritalStatus=${maritalStatus} numberOfKids=${kids} \

 4 socialSecurity=${socialSecurity}

 5 employeeSale id=${${id}}

 6 expect ${wage} calculateEmployeeWage employee=${${id}}

 7 forThisData id name salary maritalStatus kids socialSecurity wage

 8 employee1 1500 Married 2 20 50000 1940

 9 employee2 1000 Married 3 20 20000 1120

10 endLoop

The tabular format is certainly clearer to understand in these cases, but it is still not very

client-friendly, especially the description of the fragment after processThisLoop. In the

future, EasyAccept will have an IDE through which a table can be visually edited.

Whenever you have tests that are inherently tabular, like the two examples we gave, use the

tabular format. This is the pattern Table Tester. They become not only clearer to understand,

but also much easier to pick and modify later. Every additional place in the Monopoly test or

example in the employee test means a bunch more lines in the sequential script. Moreover,

should you need to modify the test sequence, you only have to update it once, in the table

description, and not in multiple points scattered throughout the long-winded sequence of tests.

 67

Pattern outline

Context: you need to test extensive lists of features for multiple business objects of the same

kind, or multiple examples to test formulas (calculations); clients want to declare business

rules in a formulaic manner.

Problem: sequences of commands become too verbose when it comes to testing extensive lists

of properties or calculation examples. This makes a script distracting, hard to review and

maintain.

Forces: developers need an algorithmic translation of business rules so that they can be tested

in an automated way.

Solution: use tables for testing in the fashion table based tools do, either by using an IDE that

translates tables to scripts automatically, or by employing tailored built-in commands that

simulate tables (like EasyAccept‟s processThisLoop command). Formulaic statements

should be added to the script as a comment for the sake of understandability.

Rationale: Tables ease up reading long-winded lists of properties and formulas and, in the

case of formulas, hides its associated algorithm from the script while still keeping the

algorithm accessible to the developers in the code that links the tests to the software being

tested. Tables also help when you need to modify the script.

 68

Template Tester

Suppose we have to create a direct mail program for the Sell-It-All Department Store. It keeps

record of clients, including personal data such as interests, favorite food, and so on. Then,

based on some criteria, the program automatically generates personalized mail to clients so as

to lure them into thinking they are unique and buying some stuff.

For example, the customer John Doe, who lives in Los Angeles, likes gardening. The program

automatically generates the following mail to be sent to John Doe (personalized data are

indicated in italics):

“Dear John Doe,

Knowing you as well as we do, we recognize quality is very important to you. You have style

and a unique taste for the very best products. That‟s why we are pleased to offer, only to

special customers like you who like gardening, this magnificent WATER-O-GIZMO (see

picture below), that will make your flowers blossom like no other. Please pay us a visit at our

local store in San Francisco.

Best regards,

Sell-It-All Department Store”

Based on John‟s interest (gardening), the program matches a suitable product and

recommends a store near his address.

This functionality poses two problems to accepting testing using scripts. The first is that it is

awkward to assert the full message with an expect command. The second is that there is no

way to attach a picture to a script. See below the test script for this functionality using the

conventional way of testing (excluding the picture tests, naturally).

 1 id1=createCustomer name="John Doe" interest="gardening" address="L.A."

 2 expect “Dear John Doe,\nKnowing you well as we do, we recognize \

 3 quality is very important for you. You have style and a unique taste \

 4 for the very best products. That’s why we are pleased to offer, \

 5 only for special customers like you who like gardening, this \

 6 magnificent WATER-O-GIZMO (see picture attached to this message), \

 7 that will make your flowers blossom like no other. Please pay us a \

 8 visit at our local store at Los Angeles.\nBest regards,\n \

 9 Sell-It-All Department Store” generateMail customer=id1 \

10 output="johnDoeResult.txt" pic=”johnDoePic.jpg"

There is a single expect in the script: lines 2 to 10 represent only one test. For other tests,

texts of similar length are employed.

In these cases, you can use the pattern Template Tester. It consists in diverting the output of

the program to an external file and then comparing this file with a template. See below what

the direct mail test script using Template Tester looks like:

 1 id1=createCustomer name="John Doe" interest="gardening" address="L.A."

 2 generateMail customer=id1 output="johnDoeText.txt" pic=”johnDoePic.jpg"

 3 equalFiles johnDoeText.txt templates/johnDoeTemplate.txt

 4 equalFiles johnDoePic.jpg pictures/waterOGizmo.jpg

 69

In line 2, the command generateMail generates both the personalized text and the picture of

the product offered to John Doe. They are stored in the files johnDoeText.txt and

johnDoePic.jpg. In lines 3 and 4, these output files are compared with templates

conveniently placed in specific folders via the command equalFiles.

An additional advantage of using Template Tester is that templates are isolated from the test

script and can be modified without changing the test structure. This is well suited to the

approach of usage test case generation. We will talk in more depth about this when discussing

the Template Generator pattern. But, in general terms, it consists in making the client or end

user operate the program when it is partially complete and recording his actions. When the

results of the program‟s execution appear, the client either asserts or rejects them. These

results can then be used as templates to test the program.

Pattern outline

Context: you need to test massive textual or non-textual content.

Problem: massive textual content is cumbersome when included in a script because it may

render the script unintelligible; non-textual content can only be directly included in a script

through an IDE.

Forces: templates for test cases can be generated automatically from the customer using

partially complete software.

Solution: divert the contents that need to be tested to a convenient place (a file) outside the

script and compare it to a template.

Rationale: the solution allows non-textual data to be tested within a script and hides the

massive textual data from the script.

Related Patterns: Template Generator can be used in conjunction with Template Tester

 70

Persistence Tester

A fundamental requirement of virtually any program is to persist the data it manipulates. But

how can you test persistence in a test script, if to do it you need to execute the program

multiple times? The solution is to apply a sequence of steps just like you do with Test Flow.

The steps are as follows:

(1) make sure the information you need to test for persistence is cleared from the

program;

(2) enter the information you need to test and optionally test if it was entered correctly;

(3) make the program under test save data and close the program;

(4) restart the program and run the persistence test.

The first step is needed to guarantee that data entered in this test session is the one that

persists. Steps 2 and 3 are easy to follow. Step 4 can be accomplished in two ways: you can

either quit the testing tool and run a separate persistence test script in a following test session,

or you can restart the program via the testing tool and run the persistence tests in the same

script. Step 3 may not be needed if persistence is automatically performed in the program

under test with a database, for example.

For example, in the employee management system, you need to check if John Doe‟s salary

persists after his data is entered in the system. Using the first approach, you need two scripts.

The first one is as follows:

 1 clearEmployeeDatabase

 2 id1=createEmployee employeeName="John Doe" salary=1500

 3 expect 1500 getEmployeeSalary employee=${id1}

 4 saveEverythingAndCloseProgram

 5 quit

In this script, you clear all employee data, create the employee John Doe with a salary of

$1500, check that his salary is correct, save the data and close the program. Finally, the

command quit is used to terminate the execution of EasyAccept.

In a second script, you would simply check that the data persisted. There must be an

employee with the name John Doe, and his salary must be $1500 (see below).

 1 id1=getEmployeeByName name="John Doe"

 2 expect 1500 getEmployeeSalary employee=${id1}

Observe that you need to create a new variable and use a special command to capture back

which employee goes by the name “John Doe”. This would not be necessary in the other

approach. In it, you use a single testing session to test for persistence. In order to do so, you

need to restart the testing tool. This is accomplished in EasyAccept by issuing he command

restart. It terminates the program‟s execution and re-executes it, keeping all variables stored

in the session. See below how the script using this second approach looks like:

 1 clearEmployeeDatabase

 2 id1=createEmployee employeeName="John Doe" salary=1500

 3 expect 1500 getEmployeeSalary employee=${id1}

 71

 4 saveEverythingAndCloseProgram

 5 # restart creates a new Façade, essentially restarting the program under
test

 6 restart

 7 # checking persistence

 8 expect 1500 getEmployeeSalary employee=${id1}

Pattern outline

Context: you need to test that data entered in the program persists in future sessions.

Problem: the lack of a systematic approach to testing persistence can hinder understanding

(particularly by the client) and test coverage.

Forces: setting up a scenario for persistence can often be reused as other tests.

Solution: testing persistence consists in two parts: in the first, the program under test is run,

data is cleared, some information is entered and checked, and then the program is closed. The

second part runs the program and checks if the information entered in the first part is still

there.

Related Patterns: Persistence Tester is a special case of Test Flow.

 72

Business Object Reference

A core concept in Computer Science is that of a primary key. A primary key is a unique

identifier for an entity (tables in databases, objects in programs, etc.). Two distinct objects, for

example, can have the exact same values for all their attributes but for the primary key. Two

customers of a department store can live at the same address, have the same birth date, have

the same tastes; they can even have the same name, but they cannot have the same id card

number or social security registration – these could serve as primary keys for a customer. In

practice, however, even these numbers aren‟t generally used as primary keys due to practical

reasons. An illegal immigrant without a visa won‟t have an id card number (but the

department store is certainly interested in increasing its income with that immigrant‟s

shopping); likewise, if the id card number of tourists is represented by their passport numbers,

the program would need to cope with different codifications for different countries.

That‟s why, in most cases, a primary key is implemented in software with a specific

identification, which is generally called an id. Its value is usually a number taken from a

sequence, or a random number or String.

When using acceptance tests, we also need primary keys to create references to Business

Objects. Suppose we were testing the sales program of the abovementioned department store.

At some point in the script, a method createCustomer is used in a test (say, inside a Creator

pattern). The customer‟s name can‟t be used as a primary key, so an internal id must be

assigned to the customer, like in the usage example below:

createCustomer name="John Doe" birthDate=09/12/1975 id=1435728

createCustomer name="Mary Doe" birthDate=05/23/1977 id=2693913

Whenever customers are referenced in the script, their id is used:

expect "John Doe" getCustomerName id=1435728

expect "Mary Doe" getCustomerName id=2693913

But wait … Could these tests be any fuzzier? If you need to manipulate 10 customers in the

tests, you have to memorize all ids? In addition to the meaninglessness of these numbers,

especially to the client, the mechanism of id attribution, random or not, is a low-level,

programmer concern. Suppose programmers realize that they need to change the way ids are

generated and represented. Depending on the type of change, all tests may have to be

modified.

The solution for this is to hide the id attribution mechanism from the tests by using script

variables – test writers use variables to store Business Object references in the form of ids

generated by the program. The mechanism employed to generate the unique ids is up to the

programmers. The only requirement on their part is to return the generated ids in the methods

that create the Business Objects. In a program using a database to store data persistently (most

do), the database itself can provide the unique key value. The programmer only has to return

this reference. Let‟s apply the pattern on the example above to clarify things:

id1=createCustomer name="John Doe" birthDate=09/12/1975

id2=createCustomer name="Mary Doe" birthDate=05/23/1977

 73

The ugly numbers are gone. Now, when referring to the customers:

expect "John Doe" getCustomerName id=${id1}

expect "Mary Doe" getCustomerName id=${id2}

The variable names are id1 and id2, but could be john or mary as well – anything that makes

the script easier to read. When the tool runs, it replaces ${ } with the content of the variable

enclosed (this is not actually seen in the script):

expect "John Doe" getCustomerName id=748239568492890543

expect "Mary Doe" getCustomerName id=178423748923789024

BORef (short for Business Object Reference) can also be used when creating Business

Objects that don‟t use an attribute-based primary key in the final program. For example, in

Alice‟s poll program, she will never choose a poll by the id assigned to it or use that id in a

report or anywhere. However, as you can see in the tests of chapter 3, the pattern BORef has

been used because different polls must be referenced throughout the script.

A witty reader may argue that there is another way of providing Business Object references:

why don‟t you simply assign objects (program entities) to variables? That way, the

programmers wouldn‟t need to bother coding any support mechanism … Well, this could be a

solution, but the problem with it is that clients would now have to deal with object orientation

and we have tried to avoid that. As this text is being written, EasyAccept doesn‟t have this

feature, but it may be an interesting user story to incorporate in the future.

Pattern outline

Context: you are writing tests for Business Objects that need to be uniquely referenced in the

script.

Problem: assigning primary keys explicitly in a script introduces “magic numbers” that make

the script hard to follow. Furthermore, Business Objects that don‟t require explicit ids still

need to be referenced in a script.

Forces: primary key attribution mechanisms are the concern of developers; assigning objects

(software concept) in the test script relieves developers from coding id attribution

mechanisms, but require clients to deal with object orientation, a concept not likely to be

familiar to them.

Solution: use script variables in a test script to refer to Business Objects; the value of the

variable is the result of a unique id attribution chosen by the program.

Rationale: the actual id attribution remains hidden from the test script and is now solely a

concern of programmers, as it should be.

Related Patterns: BORef is often used in conjunction with Creator.

 74

Only Business Objects

ATDD emphasizes the need for understandability of tests. However, the concept of

understandability differs between clients and developers. Examine the two tests below, for

instance:

expect 25 getBTreeFatherNodeIndex

expectError “Unexpected middleware fault” getRMISkeletonMiddlewareProperty

Even though they are written in EasyAccept test format, one must be a developer to

understand what they refer to – a B-Tree is a kind of hierarchical data structure for programs,

and an RMI (Remote Method Invocation) Skeleton is a middleware (communication support

software) structure.

The problem with such tests, however, is not only the jargon, but also the mismatch of testing

concerns. Generally, acceptance tests involve problem domain concerns in which the client‟s

opinion is of utmost importance. The choice of data structures or middleware is generally not

a concern of the client because he doesn‟t even know what they are. Even if he does, does he

care how developers implement the program, as long as all acceptance tests pass?

One may argue that some low-level choices may affect non-functional requirements, like

performance, and thus could be the concern of the client. If this is the case, the best thing to

do is to create performance tests at the acceptance test level (which can be understood by the

client) and leave implementation choices to developers.

Ok, but what happens when clients are programmers themselves and thus understand all tests?

Even so, there is still the argument of different test concerns. What happens when you mix

problem domain testing with implementation details? Tests become a mess, hard to

understand and maintain, which generates fear of changing the tests and ultimately a program

with lower quality. Furthermore, mixing test levels creates coupling, forcing tests to change

when internal implementation details change. Remember that, in the programming world,

“coupling” is a four-letter word.

The solution to this problem is quite simple. Only Business Objects should be exposed and

manipulated in an acceptance test script. Whenever you find a non-Business Object (B-Tree?

Skeleton?), it probably is not a client concern and should be treated in a lower level as a unit

test.

Observe that this is not affected by the tools you use. EasyAccept, an acceptance testing tool,

can be used to create unit tests, as the example above suggests. Likewise, any unit testing tool

like the xUnit family can be used to create acceptance tests, provided that the client

understands Java or the corresponding programming language.

In chapter 3, you saw an example of the application of Only Business Objects. During the

development of the poll program, Bob felt the need to test a support structure he needed: a

converter of strings to and from collections. This structure needed to be tested because if there

were a bug in it, acceptance tests would start to break even if the problem domain logic was

correct.

 75

The detailed discussion of this step, including the corresponding unit tests that Bob created,

can be found in appendix II.

Pattern outline

Context: non-business objects are included in the tests.

Problem: when non-business objects are included in the script, the tests related to them

become unintelligible to the client, who typically is not a technical person and doesn‟t

understand or care about non-business objects.

Forces: when clients don‟t understand tests, their commitment to keep reviewing tests is

lowered; testing non-business objects is important and must be done as much as the testing of

business objects; even if clients understand tests, unit and acceptance tests are used at

different testing levels.

Solution: only business objects should be tested in an acceptance test script. Remove all tests

for non-BOs and make them unit tests instead.

Rationale: Non-BOs are still tested (in TDD, everything must be tested) but, as they are not a

client concern, they are hidden from him.

 76

Client Assertion

Bob was tackling user story 4 of the Monopoly game and found the following test sequence:

 1 createGame numberOfPlayers=2 playerNames={john,mary} \

 2 tokenColors={black,white}

 3 expect john getCurrentPlayer

 4 expect false playerIsInJail playerName=john

 5

 6 rollDice firstDieResult=5 secondDieResult=5

 7 expect 10 getPlayerPosition playerName=john

 8 expect john getCurrentPlayer

 9 expect false playerIsInJail playerName=john

10

11 rollDice firstDieResult=4 secondDieResult=4

12 expect 18 getPlayerPosition playerName=john

13 expect john getCurrentPlayer

14 expect false playerIsInJail playerName=john

15

16 rollDice firstDieResult=3 secondDieResult=3

17 expect 24 getPlayerPosition playerName=john

18 expect mary getCurrentPlayer

19 expect true playerIsInJail playerName=john

It tests the rule that sends a player to jail when he throws doubles three times in a row.

Looking at line 17, he realizes he may have come across a test bug. The user story clearly

states that, when a player throws doubles three times in a row, his turn immediately ends,

before the token advances. “How come John ends up at board position 24 after throwing

double 3‟s?” He is not entirely sure why that line was included. “Is this a test bug, or did

Alice tell me a different rule that I don‟t remember?”

Suppose Bob decided this was not a bug, after all, and simply left the tests as they are (when

actually line 17 is a bug
8
). The fact that a player may complete his turn before going to jail

may change the outcome of the game. This is not what Alice wanted.

On the other hand, suppose that Bob decided to change line 17, but that this was not a test

bug. Alice really asked him to change the rule, so that players are only sent to jail after

completing their turn. In both cases we have the same problem: divergence between actual

requirements and tests.

Every time Bob doubts over a test or a requirement, he uses the pattern Client Assertion. It

simply consists in asking Alice for a clarification and committing the clarification to the tests.

This closes the communication gap that could be introduced in the process, resulting in

software bugs.

Of course, one must use common sense in using the rule. Having the client assert every

immediately obvious test bug slows down the pace of development. Furthermore, in cases

8
 The correct line 17 would have expected 30 as the player‟s token position, as this is the

board position of the Jail.

 77

where clients are not always available, a non-critical doubt may be left aside for some time

until it can be clarified (but developers must mark it in the script with comments or using

some other mechanism).

The application of Client Assertion has the additional advantage of promoting discussion

during software development. It forces clients to examine tests and reflect over requirements,

and makes developers focus their attention on the clients‟ needs. This rule is broken by

developers all the time because they think they know what the client wants or needs.

Frequently, they don’t know, which results in incorrect software.

Client clarifications are one of the criteria for the application of the pattern Commentor. That

is, Client Assertion should always be used with a test script update in the form of comments,

even if no actual tests are modified. Thus, considering that line 17 was an actual bug, the

resulting test lines around it would become:

15

16 rollDice firstDieResult=3 secondDieResult=3

17 # john throws doubles 3 times in a row and is sent to jail;

18 # his turn ends immediately, so his position should be 30 (jail)

19 expect 24 getPlayerPosition playerName=john

20 expect mary getCurrentPlayer

21 expect true playerIsInJail playerName=john

Now the bug is obvious for anyone who reads the comment. Bob solves the problem in an

elegant way with the test below, which defines the jail position as a variable.

15

16 rollDice firstDieResult=3 secondDieResult=3

17 # john throws doubles 3 times in a row and is sent to jail;

18 # his turn ends immediately, so his position should be 30 (jail)

19 JailPosition=30

19 expect ${JailPosition} getPlayerPosition playerName=john

20 expect mary getCurrentPlayer

21 expect true playerIsInJail playerName=john

Pattern outline

Context: a developer has found a potential test bug, or has doubts about a test.

Problem: if developers change what they think might be test bugs by themselves or assume

potential test bugs are correct, potential actual bugs will emerge in the program; developers

should not wear the client‟s hat.

Forces: clients must frequently review tests to assure they are correct.

Solution: every time doubts arise over a test (i.e., involving requirements and/or business

rules), developers should ask the client for clarification. Tests should not be modified without

the client's consent unless a test bug is immediately obvious (use common sense).

Clarification should be included as a comment in the tests (co-application of Commentor).

 78

Rationale: Client Assertion avoids developers introducing errors in the test suite and can

serve as a means of making the client review the tests.

Related patterns: Client Assertion should always be used in conjunction with Commmentor.

 79

Commentor

Acceptance tests must be created with understandability in mind, in order to successfully

involve clients in the game. Be that as it may, test logic is frequently far from simple and may

even become convoluted. Sometimes this is due to lack of simplicity values on the part of

analysts, who create overly complicated tests, but other times the complexity is inherent to the

test itself – it is intricate, involves lots of interrelated rules or interdependent sequences of

actions.

If the test is inherently complex, there‟s not much that can be done to improve its

understandability other than explain in detail what it does. However, when the

understandability problem stems from bad tests, some patterns can be used to help refactor

them. Single Tester and Summarizer are patterns used for this purpose and will be detailed

in the next section.

The pattern Commentor advocates that comments help improve understandability in scripts

and are fundamental to establish effective communication among developers and between

developers and clients. Requirements inevitably change during software development, and so

must tests. Commentor helps you keep them in sync.

The pattern requires that tests be commented when they are created and suggests particular

situations when comments should be improved or expanded. Commentor states that

comments should be added to the script to enhance the comprehension of a test in the

following situations:

1) a test has been modified;

2) a test is difficult to understand (inherently complex) or insufficiently commented;

3) the pattern Client Assertion has been used (even if no tests are modified);

Situation #1 requires Commentor because otherwise comments and test become inconsistent.

In situation #2, improving comments may be the only way to increase test understandability,

because of the inherent complexity involved. In situation #3, the application of the Client

Assertion pattern itself may already result in a test update, which justifies the co-application

of Commentor. But, even if it does not (for example, a potential bug was actually a

misunderstanding), a comment on the clarification should be included in the tests so that other

people will not have the same wrong interpretation or the same doubts when reading the test.

Think of it this way: if the tests were not clear enough to start with and required clarification,

then whatever was clarified should be added to the test so that a future developer won‟t need

to clarify again.

A simple example of situation #1 in the Monopoly game follows:

 1 # Testing Income Tax; Alice begins with $1000 and should lose $200

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 rollDice firstDieResult=2 secondDieResult=2

 5 expect 800 getPlayerCash playerName=Alice

 80

In this test, the income tax rule is tested. When a player‟s token falls on income tax, the player

should lose $200. In the test case, Alice begins the game with $1000, falls on income tax

(position 4 on the board) and ends up with $800.

Now suppose the income tax rule changes to increase the tax value to $300. Bob updates the

test but overlooks the need (or simply forgets) to update the comment. What happens now?

Another programmer (or even Bob himself, at another opportunity) will be confused when he

reads the test. Is there a bug in the tests, or a requirement has changed and the tests were not

updated? Remember that, in ATDD, acceptance tests are not only tests but also a

representation of requirements themselves.

Now see a simple example of situation #2. Analyze the following test.

 1 createGame numPlayers=2 playerNames={player1,player2} \

 2 tokenColors={black,white}

 3 setPlayerCash player=player1 cash=1000

 4 setPlayerCash player=player2 cash=3000

 5 rollDice firstDieResult=2 secondDieResult=3

 6 rollDice firstDieResult=2 secondDieResult=3

 7 expect 925 getPlayerMoney playerName=player1

 8 expect 2875 getPlayerMoney playerName=player2

 9 rollDice firstDieResult=5 secondDieResult=5

10 rollDice firstDieResult=5 secondDieResult=5

11 expect 1225 getPlayerMoney playerName=player1

12 expect 2375 getPlayerMoney playerName=player2

13 rollDice firstDieResult=5 secondDieResult=5

14 rollDice firstDieResult=5 secondDieResult=5

15 expect 1775 getPlayerMoney playerName=player1

16 expect 1625 getPlayerMoney playerName=player2

17 rollDice firstDieResult=5 secondDieResult=5

18 rollDice firstDieResult=5 secondDieResult=5

19 expect 2575 getPlayerMoney playerName=player1

20 expect 625 getPlayerMoney playerName=player2

21 quitGame

Can you tell what this sequence tests? Now read its commented version and see for yourself

how much clearer it becomes.

 1 # testing railroads; a player that falls on a railroad must pay

 2 # the owner the result of the dice throw times the number of railroads

 3 # the owner has in his possession times $25

 4 createGame numPlayers=2 playerNames={player1,player2} \

 5 tokenColors={black,white}

 6 setPlayerCash player=player1 cash=1000

 7 setPlayerCash player=player2 cash=3000

 8 # player1 falls on Reading Railroad and buys it automatically ($200)

 9 # player2 falls on it and pays $125 (dice throw 5 x 1 railroad x $25)

10 rollDice firstDieResult=2 secondDieResult=3

11 rollDice firstDieResult=2 secondDieResult=3

12 expect 925 getPlayerMoney playerName=player1

13 expect 2875 getPlayerMoney playerName=player2

14 # player1 falls on Penns. Railroad and buys it automatically ($200)

 81

15 # player2 falls on it and pays player1 $500 (10 x 2 railroads x $25)

16 rollDice firstDieResult=5 secondDieResult=5

17 rollDice firstDieResult=5 secondDieResult=5

18 expect 1225 getPlayerMoney playerName=player1

19 expect 2375 getPlayerMoney playerName=player2

20 # player1 falls on B & O Railroad and buys it automatically ($200)

21 # player2 falls on it and pays player1 $750 (10 x 3 railroads x $25)

22 rollDice firstDieResult=5 secondDieResult=5

23 rollDice firstDieResult=5 secondDieResult=5

24 expect 1775 getPlayerMoney playerName=player1

25 expect 1625 getPlayerMoney playerName=player2

26 # player1 falls on Short Line Railroad and buys it automatically ($200)

27 # player2 falls on it and pays player1 $1000 (10 x 4 railroads x $25)

28 rollDice firstDieResult=5 secondDieResult=5

29 rollDice firstDieResult=5 secondDieResult=5

30 expect 2575 getPlayerMoney playerName=player1

31 expect 625 getPlayerMoney playerName=player2

32 quitGame

The third situation where you must use the pattern in when you apply Client Assertion. An

example of it can be found in the discussion of that pattern.

Pattern outline

Context: test scripts are difficult to understand or will be refactored.

Problem: comments are becoming inconsistent with the associated tests; tests are difficult to

understand.

Forces: comments in the tests serve an important communication role between clients and

developers, as they further clarify the script, an artifact that reconciles the languages of both.

Solution: add explanatory comments to tests that are hard to understand in the script; update

comments whenever a test changes, doubts are clarified or requirements and business rules

evolve.

Rationale: comments are an integral part of the test suite and serve as an additional means of

communicating how the program should behave. They improve tests understandability.

Related patterns: Client Assertion is always used in conjunction with Commentor.

 82

Summarizer

Repetition is very common in acceptance tests. Although redundancy is sometimes necessary

to improve test‟s understandability, most often it is a source of distraction to the reader. The

pattern Summarizer tackles this problem by diverting repeated test sequences to separate

scripts or by hiding them into special preparer commands.

Let‟s see an example to figure things out. Suppose that, when testing Monopoly, Bob needs to

analyze a series of special situations that have in common the fact that the game has many

players and is in an advanced stage, i.e., players have cycled through the board multiple times

so that all deeds for properties and railroads belong to them.

Good testing practices advocate that test cases should not depend on each other (see the

pattern

Single Tester). Thus, for each single test case, Bob has to issue a series of shortcut

commands – he devised the giveDeedToPlayer command – to prepare the scenario for the

special tests (this preparation represents the build phase of Test Flow, one particular place

where repetition plagues the scripts).

Such a sequence follows:

createGame numPlayers=8 playerNames={p1,p2,p3,p4,p5,p6,p7,p8} \

 tokenColors={black,white,red,green,blue,yellow,orange,pink}

giveDeedToPlayer playerName="p1" deed="St.Charles Place"

giveDeedToPlayer playerName="p1" deed="New York Avenue"

giveDeedToPlayer playerName="p1" deed="Park Place"

giveDeedToPlayer playerName="p2" deed="Baltic Avenue"

giveDeedToPlayer playerName="p2" deed="Kentucky Avenue"

giveDeedToPlayer playerName="p2" deed="Marvin Gardens"

giveDeedToPlayer playerName="p3" deed="States Avenue"

giveDeedToPlayer playerName="p3" deed="Pacific Avenue"

giveDeedToPlayer playerName="p3" deed="Boardwalk"

...

giveDeedToPlayer playerName="p8" deed="Connecticut Avenue"

giveDeedToPlayer playerName="p8" deed="Tennesse Avenue"

giveDeedToPlayer playerName="p8" deed="Ventnor Avenue"

In the sequence, a game with 8 players is created and deeds are equally distributed among the

players. Having to repeat this sequence for each test case is just not nice, even if you

copy/paste it all over the script. So, applying Summarizer, what does the script become? The

way Bob chose was to create a different script, say advancedGameBuild.txt, and whenever

he needs to perform the build in a script, he runs it.

In EasyAccept, the way to do it is to use the built-in command executeScript. This

command is used to run a script from within another, after pausing the current script‟s

execution. It gives the user the option of running the new script in a new thread of execution

(with the argument newThread), but that will not be necessary in the example we are

discussing. If you need an example of the usage of executeScript with threads, please refer

to EasyAccept‟s manual in appendix I.

Bob‟s test cases become much cleaner after Summarizer, observe:

 83

Test case 1

executeScript newThread=false advancedGameBuild.txt

rollDice, expect, etc. follow

Test case 2

executeScript newThread=false advancedGameBuild.txt

rolDice, expect, etc. follow

For every test case that uses the build, a simple reference to advancedGameBuild.txt is

made, reducing the number of lines that appear in the script. Moreover, should Bob need to

modify the build, there‟s only one place to change.

You can use Summarizer in an additional way. Instead of placing the test sequence in a

separate script, you can simply delegate it to the program‟s code by creating a script

command. This way, you don‟t need to use executeScript. In the Monopoly example, Bob

could create a command called buildAdvancedGame and use it in the script, like below:

Test case 1

buildAdvancedGame

rollDice, expect, etc. follow

Test case 2

buildAdvancedGame

rolDice, expect, etc. follow

Using this approach, the build sequence is diverted to the program‟s code. In addition to

summarizing and isolating the sequence, which simplifies future updates, an advantage of it

over the executeScript approach is that arguments can be used to tailor the sequence for

specific needs. For example, the buildAdvancedGame command could have an argument for

the number of players you want the game to be created with, or an argument to state whether

or not you want railroads and utilities‟ deeds to be distributed, in addition to properties‟

deeds.

The downside of the approach is that the sequence becomes “inaccessible” to the client (in the

sense that clients don‟t understand code); thus, programmers alone must assure no test bugs

are found; additionally, it only makes sense to summarize build and operate phases of a Test

Flow, not check phases (the various expect and equalFiles commands), unless you treat the

check phase as a unit test (see the proper acceptance vs. unit test discussion in appendix II).

Pattern outline

Context: too many repeated tests are found in the script.

Problem: repetition of the same test sequence in multiple tests hinders understanding and

makes the scripts harder to maintain.

Forces: test sequences can often be summarized in a single expressive command without

hindering the understanding the remainder of the test.

Solution: when multiple tests use the same test sequence, set it aside in a separate script and

have all tests that use it refer to this script. Alternatively, create a shortcut command if you

 84

need to hide the test sequence content from the script (only developers will have access to

what it does, in the program code).

Rationale: tests become cleaner and easier to follow when script repetition is dealt with.

Related patterns: Table Tester also deals with script repetition, but in circumstances where

test sequences have the same structure, differing only in the values.

 85

Single Tester

One important principle of test design states that tests should be independent from one

another. Each test should focus on only one business rule, or even part of it. The reason is the

need to cope with test change, which is directly linked to requirements change. If two

business rules are tested together and one of them changes, the other test will need change as

well.

The Single Tester pattern is used in such a situation. Whenever you find a test that involves

multiple business rules, refactor it in a way that results in each test referring to a single

business rule. Consider, for example, the following cumbersome Monopoly script that tests at

the same time the income tax business rule, the salary rule and one of the community chest

cards (Lose $15):

 1 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 2 playerTokens={white,black}

 3 # Alice falls on income tax and loses $200

 4 rollDice firstDieResult=1 secondDieResult=3

 5 expect 1300 getPlayerCash playerName=Alice

 6 rollDice firstDieResult=4 secondDieResult=6

 7 # Alice is put on #35 and falls on #2; she gets a new salary for having

 8 # cycled the board, but receives the CC card to lose $15

 9 setPlayerPosition playerName=Alice position=35

10 rollDice firstDieResult=3 secondDieResult=4

11 giveCommunityChestCardToPlayer card="Lose $15"

12 expect 1485 getPlayerCash playerName=Alice

What is the problem with this test case? Suppose that Alice decides that position #2 on the

board will no longer be a community chest place. In order to test the rule that makes a player

lose $15 when getting the “Lose $15” community chest card, Bob will have to change the

test, making the player fall on the new community chest position, say, position #13. Doing so,

however, interferes with the salary test, now that the player won‟t cycle the board.

Another situation: what if the income tax rule changes? For example, if its value drops from

$200 to $150. Alice‟s cash will need recalculation at line 12 in addition to line 5, which

makes no sense, since line 12 should have nothing to do with income tax testing.

This was an example of a bad test case that needs refactoring. For each test, there should be

only one business rule, even if the total number of lines is greater. See how the reworked

script becomes cleaner. First, the income tax test:

 1 # testing the income tax rule

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 # Alice falls on income tax and loses $200

 5 rollDice firstDieResult=1 secondDieResult=3

 6 expect 1300 getPlayerCash playerName=Alice

 7 quitGame

 86

Now the salary rule:

 1 # testing the salary rule

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 # Alice is put on #35 and cycles past #40 (Go!) to get a salary

 5 setpPlayerPosition playerName=Alice position=35

 6 rollDice firstDieResult=2 secondDieResult=4

 7 expect 1700 getPlayerCash playerName=Alice

 8 quitGame

Finally, the community chest card rule:

 1 # testing the salary rule

 2 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 3 playerTokens={white,black}

 4 # Alice falls on a Community Chest and receives a card that takes $15

 5 rollDice firstDieResult=1 secondDieResult=1

 6 giveCommunityChestCardToPlayer card="Lose $15"

 7 expect 1485 getPlayerCash playerName=Alice

 8 quit

Observe that, even though there are considerably more test lines, they are now clearer and

independent from one another. Changes in one of the business rules now won‟t affect the tests

of the others.

Pattern outline

Context: the script includes tests that evaluate more than one business rule at once.

Problem: a change in one of the business rules interferes with the tests of the others.

Forces: you may have no choice but to make tests dependent when they are inherently

complex.

Solution: try to refactor tests on a one business rule to one test basis, so that they become

independent.

Rationale: when tests are isolated, they can be updated without fear interfering with other

tests.

Related patterns: in order to refactor tests, you need to use Client Assertion.

 87

Template Generator

Suppose the development of Monopoly is well under way. Bob has completed a number of

user stories and Alice can already play the game with most of the rules.

Bob then invites Alice for a Monopoly gaming session. He starts a new game through a

tentative user interface with rudimentary dialog boxes and a low-resolution image

representing the board.

“This board is ugly”, says Alice. “Don‟t worry”, Bob replies, “this is not the final user

interface. I guarantee you will have a beautiful board in the end to play with”.

“Let‟s see”, he continues. “Two players. Name of the first one: Alice. Which token color do

you want?”

“Pink”, she replies. “Pink it will be. For me, Bob, token color is blue … Ok, you begin.”

Alice starts playing by clicking on a button labeled “Roll Dice”. A message is shown stating

that the result of the dice throw is 4 (1 + 3). “Bad luck, Alice. You fell on income tax and just

lost $200. That‟s how much should lose, right?”. “Yes”, she answers. “Let‟s see if you really

lost $200. Click on the “Status” button.” A dialog box appears showing that Alice now has

$1300.

Now it‟s Bob‟s turn. He clicks on the “Roll Dice” button and gets 10 (5 + 5) as a result. He

falls on “Jail – Just Visiting”, and nothing happens. As he threw doubles, he gets an extra

turn. Luckily for him, he throws doubles once again 10 (5 + 5)! But that makes him fall on the

Free Parking, and again nothing happens.

“Wait!”, says Alice, “There‟s so many do nothing places in the board ... I just got an idea for a

new rule that I want you to put in the game.” She then explains the “jackpot” rule. Whenever

a player falls on the Free Parking, he should receive a certain amount of cash, called the

jackpot, which corresponds to 5% of the cash of the player who has the most cash in the

moment.

Bob writes down the description of this new user story so that he can implement it later. The

game continues. Bob rolls dice one more time, the result is 5 (2 + 3). He falls on B & O

Railroad and buys it automatically. Now it‟s Alice‟s turn. From the income tax (place #4), she

rolls dice and gets a 6 (3 + 3). She falls on “Jail – Just Visiting” and gets and additional

throw. She rolls dice once again and gets a 7 (4 + 3), falling on the second Community Chest

place. As a result, a dialog box appears showing the card that was drawn: “Advance to the

nearest railroad.” Her token is placed on place #25, B & O Railroad, whose owner is Bob.

“Now this is a situation I‟ve never seen”, says Bob. He laughs and says “How much should

you pay me, since you arrived at the railroad by teleportation?”

Alice clarifies stating that she should only pay for the results of her last throw: 7 times $25 =

$175, given that Bob is the owner of a single railroad. After her turn, Alice should remain

with $1300 – 7 x $25 = $1125. She reckons the result, and Bob writes it down. There was not

 88

a test for this case, and Bob feels the program is probably wrong, which he confirms in the

game‟s status: Alice now has $925.

Bob stops the game at this point because he needs to analyze the script that resulted.

During the entire game session, Bob was applying the pattern Template Generator. Before

Alice arrived, he coded a background mechanism to record every action that was taken in the

game, along with the player‟s cash values. Thus, a script was generated in the end. By noting

down Alice‟s comments and replies during the game, Bob can now process the script that was

generated automatically and from it write relevant new tests. This processing is needed

because Alice must assert the templates (expected values and errors) that were generated.

Let‟s analyze the example to clear this out. This was the script generated by the background

mechanism (observe that other game‟s properties could be included, but we chose to show

you only the cash so that the script didn‟t end up cluttered):

 1 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 2 playerTokens={white,black}

 3 rollDice firstDieResult=1 secondDieResult=3

 4 expect 1300 getPlayerCash playerName=Alice

 5 expect 1500 getPlayerCash playerName=Bob

 6 rollDice firstDieResult=5 secondDieResult=5

 7 expect 1300 getPlayerCash playerName=Alice

 8 expect 1500 getPlayerCash playerName=Bob

 9 rollDice firstDieResult=5 secondDieResult=5

10 expect 1300 getPlayerCash playerName=Alice

11 expect 1500 getPlayerCash playerName=Bob

12 rollDice firstDieResult=2 secondDieResult=3

13 expect 1300 getPlayerCash playerName=Alice

14 expect 1300 getPlayerCash playerName=Bob

15 rollDice firstDieResult=3 secondDieResult=3

16 expect 1300 getPlayerCash playerName=Alice

17 expect 1300 getPlayerCash playerName=Bob

18 rollDice firstDieResult=4 secondDieResult=3

19 giveCommunityChestCardToPlayer card="Advance to nearest railroad."

20 expect 925 getPlayerCash playerName=Alice

21 expect 1675 getPlayerCash playerName=Bob

The values indicated in lines 20 and 21 are wrong and should be $1125 and $1475. Based on

this “raw” test script, Bob applies Single Tester and comes up with a useful test for the

railroad teleportation, which he had overlooked.

 1 createGame numberOfPlayers=2 playerNames={Alice,Bob} \

 2 playerTokens={white,black}

 3 # We give B & O Railroad to Bob and put Alice on Jail – Just

 4 # Visiting, so that she falls on Community Chest next

 5 giveDeedToPlayer playerName=Bob deed="B & O Railroad"

 6 setPlayerPosition playerName=Alice position=20

 7 rollDice firstDieResult=4 secondDieResult=3

 8 giveCommunityChestCardToPlayer card="Advance to nearest railroad."

 9 # Alice should pay Bob $175 = 7 (dice throw) x 1 railroad x $25

10 expect 1325 getPlayerCash playerName=Alice

11 expect 1675 getPlayerCash playerName=Bob

 89

Template Generator helps finding new tests, promotes discussion on current features, allows

clients to think about new ideas for features. Moreover, Template Generator helps in the

validation of the software‟s user interface. Having a user feel the interaction with the software

is a good opportunity to find out whether or not the UI works for him.

Pattern outline

Context: development is under way and partially working software is available; you need to

find more test cases.

Problem: as development progresses, it becomes harder to find test cases other than the more

direct examples of software functions.

Forces: automation speeds up test creation; software usage by the client can reveal bugs that

would otherwise not be considered; however, providing a recording mechanism requires extra

effort by the developers.

Solution: have the client or end user operate the partially working software and provide a

background mechanism to automatically generate a test script based on his actions (by

recording the sequence of actions). When the client is done with a given operation, he

examines the results that were presented and either accepts or rejects it. This result then

function as a template for a test consisting in the sequence of actions performed by the client.

Rationale: the pattern provides an automated way of capturing new tests from the client.

Some of these tests could be overlooked if you only generate tests manually.

 90

Appendix I – EasyAccept’s Manual

Requirements

EasyAccept is a tool developed to help development teams create acceptance tests. Such tests

are black box and aim to capture the functional requirements for a software system as

expressed by a client. A client is typically a non-IT person with a need to be solved through a

software system. EasyAccept is being developed with the following requirements in mind:

 It should be easy for a client to write acceptance tests him or herself. Since knowing what

to test needs some training (e.g. to test limit conditions, etc.), this task will usually be

performed together with an experienced software person.

 Even if a software person helps a client to write tests, the client must be able to

thoroughly understand the written tests without any help (after learning a bit about test

language syntax).

 EasyAccept should be reasonably easy to retrofit into existing software, as long as

business logic has been separated from user interface considerations in the software to be

tested.

 It should be easy to automate the execution of acceptance tests.

 It should be easy to test error conditions and non-error conditions.

Basic Decisions

In order to satisfy the above requirements, the following decisions were taken:

 Tests are written using a simple script language. A script can call business logic and check

that it produces the proper output.

 The script language is not object-oriented. It seems easier not to burden the client with the

notion of objects, encapsulation, state, etc.

Internal Commands

Command Description

stringDelimiter Built-in command which changes the string delimiter to the given

delimiter. By default, the string delimiter is ".

expect Built-in command which is used to check that a (business logic)

command worked correctly.

expectDifferent Built-in command which is used to check that a (business logic)

command produced a result different from a given string.

expectWithin Built-in command which is used to check that a (business logic)

command produced the expected floating-point result within a desired

precision.

expectError

Built-in command which is used to check error conditions of a

(business logic) command.

equalFiles

Built-in command which compares two files.

 91

stackTrace

Built-in command which is used to obtain a stack trace when

debugging. This is useful when unexpected exceptions occur and one

wishes a stack trace to see what is happening.

quit

Built-in command to quit EasyAccept.

executeScript Built-in command that executes a given script. The current script‟s

execution is paused until the new script executes to completion. Either

the current thread or a new thread taken from the thread pool may be

used to execute the new script.

repeat Built-in command that is used to repeat a given command‟s execution

a specific number of times.

threadPool Built-in command that creates a thread pool to execute scripts.

echo Built-in command that returns the concatenation of its parameters.

Examples

Executing business logic

A script is written in a text file. A command is written on a single line. A command is simply

executed. For example:

createUser id=id1 name="John Doe" birthdate=1957/02/04

will simply call the createUser business method passing three parameters to it.

Checking business logic execution

Special built-in commands can be used to check that a (business logic) command worked

correctly. For example:

createUser name="John Doe" birthdate=1957/02/04

expect "John Doe" getUserName key=key1

expectWithin .01 2345.67 getSalary key=key1

In the above two lines, the first line calls a business logic command. EasyAccept will accept

that it has functioned correctly if it does not produce an error (an Exception, in programmer

parlance). The next line also calls business logic (getUserName with parameter key1) but

checks that it returned the string “John Doe”. The third line checks that the salary is correct,

with a precision of one cent.

Using variables

It is sometimes necessary to obtain the result returned by a command in order to use it in the

test script. For example, suppose that the createUser command chooses a record key

internally (say a database OID) that is unknown to the tester. The following script shows how

to deal with the situation using variables (assuming that createUser returns the chosen

record key):

 92

key=createUser name="John Doe" birthdate=1957/02/04

expect "John Doe" getUserName key=${key}

The syntax ${varName} is substituted by the variable's value.

The scope of a variable is the set of scripts being executed, that is, from the time of variable

definition until the end of the current EasyAccept execution.

Here is another example that checks whether two users with the same attributes generated

different keys in the database:

key1=createUser name="John Doe" birthdate=1957/02/04

key2=createUser name="John Doe" birthdate=1957/02/04

expectDifferent ${key1} echo ${key2}

Checking error conditions

A special built-in command can be used to check that a (business logic) command produces

an error (using an exception). For example:

expectError "Unacceptable date." createUser name="John Doe"

birthdate=1957/02/20

In the above line, a business logic command is called createUser. EasyAccept will accept

that it has functioned correctly if it produces an error (an Exception, in programmer

parlance) and if the Exception's error message is "Unacceptable date."

Checking voluminous output

When you want to use the expect built-in command but the string to be checked is large, it

may be better to leave the string in a text file and have the business logic command produce

output in another file. Then, the built-in command equalFiles can be used to check the

command's output.

this shows that John Doe exists

expect "John Doe" getUserName id=id1

produceReport id=id1 outputFile=rep.txt

equalFiles file1=expected-report.txt file2=rep.txt

In the above example, the command produceReport will produce a report concerning John

Doe and the report will be left in file rep.txt. The next line checks that the rep.txt file is

equal to the expected-report.txt file. This last file (the expected report) should be

produced beforehand (by hand, for example) and should contain exactly the output desired for

the produceReport command.

Executing scripts

With EasyAccept you can execute a script from within another. The current script‟s execution

pauses until the new script executes to completion.

 93

runs the script script2.txt from within the current script using the

current thread

executeScript newThread=false scriptFile=script2.txt

If you want the new script‟s execution to be run in a new thread, you can flag the argument

newThread with true. EasyAccept takes a new thread from the thread pool, which must have

been previously created with the threadPool command.

threadPool poolSize=5

runs the script script2.txt in a new thread taken from the thread pool

executeScript newThread=true scriptFile=script2.txt

Debugging

When any command produces an unexpected exception and you would like to examine a

stack trace of the situation that led to the exception, use the stacktrace command as shown

below.

the following command produces an exception

someCommand param=someValue

In this case, in order to see details of the exception that was produced, temporarily use the

following command during debugging:

the following command produces an exception

stackTrace someCommand param=someValue

Miscellaneous commands

The repeat command can be used to execute a given command a specific number of times.

The quit command closes EasyAccept.

resetPlayerScore

adds 6x200 points to the player’s score

repeat numberOfTimes=6 playerScores points=200

expect 1200 getPlayerScore

quits EasyAccept

quit

The language

A script resides in a file. Each line consists of name=value pairs. The following are examples

of acceptable name=value pairs:

name=value

name

name=

name=""

=value

In the second and third cases, the value is null; in the fourth case, the value is empty; in the

fifth case, there is no name.

 94

In a line, the first name-value pair represents a command to be executed (the name) and

typically does not provide a value. The name of the command must match a method available

in the business logic. Parameters are passed as given in the other name=value pairs. In reality,

since Java does not provide parameter names through reflection, the order of the parameters

in the test must match the order in the business logic. The names themselves are not used and

serve only as documentation in the tests. Remember that the parameter order is important. A

method appropriate to the parameter types given will be found in the business logic. The

following parameter types are acceptable and automatic conversion will be provided from a

string to the parameter value of appropriate type:

String, boolean, char, byte, short, int, long, float, double

A line starting with # is a comment. The line continuation character is \. A \ character itself

must be given as \\.

The default string delimiter is ". This may be changed (see below).

Built-in commands

EasyAccept has several built-in commands used to perform special testing actions. They are

described below.

echo

echo any string

This command returns the concatenation of its arguments. It is typically used to examine

command results, variable names, etc.

equalFiles

equalfiles OKfile fileToTest

This command is a test of file contents. It receives two files, and the test passes if the two files

have identical contents. By convention, the first file contains the correct (expected) output and

the second file contains the file to be tested. This command is typically used after a business

logic command that has produced its output in a file. There are two ways of using

equalfiles command:

1) With Relative path (relative to directory where EasyAccept is executed)

equalfiles ./src/easyaccept/script/test/script1.txt

./src/easyaccept/script/test/script1.txt

2) With AbsolutePath:

equalfiles c:/projetos/script1.txt c:/script2.txt

expect

 95

expect expectedString businessLogicCommand paramName=paramValue ...

This command executes the businessLogicCommand passing the specified parameters. The

businessLogicCommand must return a string, which is compared with expectedString. The

test passes if the strings are equal. No errors (exceptions) may occur.

expectDifferent

expectDifferent stringNotExpected businessLogicCommand paramName=paramValue

...

This command executes the businessLogicCommand passing the specified parameters. The

businessLogicCommand must return a string, which is then compared with expectedString.

The test passes if the strings are different. No errors (exceptions) may occur.

expectError

expectError expectedErrorString businessLogicCommand paramName=paramValue

...

This command executes the businessLogicCommand passing the specified parameters. The

businessLogicCommand must return an error (produce an exception, in Java) using an error

string. This string is compared with expectedErrorString. The test passes if the strings are

equal. If no exceptions are thrown, the test does not pass.

expectWithin

expectWithin precision expectedValue businessLogicCommand

paramName=paramValue ...

This command executes the businessLogicCommand passing the specified parameters. The

businessLogicCommand must return a value of type double, which is compared with

expectedValue. The test passes if the values are equal, within the given precision. No errors

(exceptions) may occur.

stackTrace

stackTrace <any other command, including built-in commands>

This command executes the command indicated and, if an exception is thrown, a full stack

trace is printed. This is useful for debugging and will not normally be used permamently in

scripts.

stringDelimiter

stringDelimiter delimiter_character

This command changes the string delimiter to the given character. By default, the string

delimiter is ".”

 96

quit

quit

This command ends EasyAccept execution.

executeScript

executeScript newThread scriptFile

This command is used to execute a script from within another. The new script can either be

executed in a new thread (first parameter=”true”) or using the current script‟s thread (first

parameter=”false”). The new script is executed using a subroutine return mechanism.

repeat

repeat numberOfTimes anyCommand

This command is used to execute a script command a given number of times.

threadPool

threadPool poolSize

This command creates a thread pool with a definite pool size that EasyAccept uses to execute

scripts concurrently.

Instructions for the Programmer

In order to expose the business logic of your program, you must write a façade. EasyAccept

will instantiate the façade once and all public methods contained in the façade will be callable

from a test script. Remember to separate the business logic from the user interface. Your

façade should not print anything anywhere. It should communicate itself with the outside by

accepting parameters, returning results or throwing exceptions. Parameters and return values

cannot be objects.

In order to call EasyAccept to test a program, use the following syntax:

java -classpath ... easyaccept.EasyAccept <FacadeClass> <scriptFile>

[<scriptFile>] ...

where:

 <FacadeClass> - corresponds to the full class name (ex: easyaccept.script.TestFacade) of

facade of he system to be tested.

 <scriptFile> - corresponds to the full name of a file or a directory. If the argument is a file,

it can have any extension and should be composed by test commands written in

EasyAccept script language. However, if it is not a EasyAccept script, EasyAccept will

 97

still try to execute each line of the file – resulting in many errors. If the argument is a

directory, EasyAccept will look for all files in this directory and its subdirectories, include

them in a queue and execute all test commands of each file found.

A EasyAccept exit code of 0 implies that all tests have passed.

 98

Appendix II – Acceptance Tests and Unit Tests

In this appendix we explain how ATDD is integrated with unit tests.

We illustrate our exposition with Alice and Bob‟s poll program and use examples that use

JUnit (www.junit.org), a unit testing tool for Java.

Recall from chapter 3 that Bob needs to implement a StringParser class to make

conversions between Java Collections and Strings, because EasyAccept hypothetically

doesn‟t have this built-in feature. The poll program‟s tests have to manipulate collections of

answers (actually, they are lists, but Bob decides to implement the general case): collections

of answers are passed as an argument when creating a poll, for example; and they are also

returned by commands like getPollAnswers. See below the code for such methods inside the

poll program‟s Façade:

public String getPollAnswers(String poll) {

 Collection answers = pollSystem.getPollAnswers(poll);

 return StringParser.collectionToString(answers);

 }

 public String createPoll(String name, String answers)

throws MalformedStringException {

 return pollSystem.createPoll(name, StringParser

 .stringToCollection(answers));

 }

So, why doesn‟t Bob simply add the tests for the conversion into the acceptance testing script

just like the other ones? The issue with this particular type of test is that Alice doesn‟t care

about it. She may even understand what the tests for the conversion do, but they are simply

irrelevant for her. If Bob includes such tests among the acceptance tests, the scripts will start

to clutter up, diverting attention from the important tests (for Alice).

However, it is really important to tests StringParser, as much as any business rule or

requirement. As a matter of fact, if StringParser has a bug, higher level acceptance tests

will start to break.

Thus, Bob can‟t escape. Out of habit, he chooses JUnit as the testing tool to do the unit

testing. Observe that this is not a matter of which tool you choose. EasyAccept can be used to

do unit testing, as much as JUnit can be used to do acceptance testing (in this case, provided

that the client can read Java).

Bob will do test-driven development, just the way he did with the acceptance tests. The

differences now are that he will write the tests himself, without the aid or review of Alice, and

she doesn‟t need to be involved in any phase of the process.

He begins by tackling the conversion from String to Collection. The method

stringToCollection from the StringParser class receives a comma-separated list of

Strings enclosed in { } and returns an object that implements the Java interface Collection.

Before writing any code for the method, he must write tests for it. This is the first test he

creates using his Java editor:

http://www.junit.org/

 99

package util;

import junit.framework.TestCase;

import java.util.Collection;

import java.util.ArrayList;

public class TestStringParser extends TestCase {

 /** Tests if the string {} is parsed correctly

 */

 public void testNoElementStringToCollection() {

 String s0 = "{}";

 Collection c0 = (Collection)

 StringParser.stringToCollection(s0);

 Collection c0ok = new ArrayList();

 assertEquals(c0, c0ok);

 }

}

Let‟s analyze the test code. First of all, Bob creates a separate package called util, where he

will store StringParser and any other utility class not directly related to the poll program.

He then creates the TestStringParser class, which is a subclass of TestCase, the abstract

testing class of the JUnit framework.

Each unit test for StringParser is enclosed in a method within TestStringParser. The first

test Bob writes is the test he called testNoElementStringToCollection, which does just

what the name suggests. It creates a String that represents a Collection with no elements:

“{}”, and expects that the method stringToCollection returns a Collection with no

elements. He does so through the TestCase method assertEquals, which compares the two

objects. In the test code, Bob chooses an ArrayList as the Collection implementation.

Bob runs TestStringParser with JUnit for the first time. The result of its execution is

shown below:

Unsurprisingly, the only test resulted in an error because StringParser doesn‟t even exist

yet. Bob then sets out to implement the simplest code he can to make the test pass. Such a

code follows:

 100

package util;

import java.util.Collection;

import java.util.ArrayList;

public class StringParser {

 public static Collection stringToCollection(String source){

 Collection result = new ArrayList();

 return result;

 }

}

The StringParser class simply returns an empty ArrayList, which should exactly match

what is expected by the current test. This is the result of running JUnit again:

Green bar! All tests are working! Big deal, Bob. Now do some serious testing, will you?

Bob increments TestStringParser with one more method (that is, one more test), depicted

below (just the method):

/** Tests if the string {player1} is parsed correctly

 */

 public void testOneElementStringToCollection() {

 String s1 = "{player1}";

 Collection c1 = (Collection)

 StringParser.stringToCollection(s1);

 Collection c1ok = new ArrayList();

 c1ok.add("player1");

 assertEquals(c1, c1ok);

 }

This new test takes the String “{player1}” and must return a Collection (implemented as

an ArrayList) consisting of the String “player1”. To do so, the test creates a Collection

with such a String, and compares it via assertEquals to the String return by the

stringToCollection method.

When Bob runs JUnit again, it shows an assertion error in this new test:

 101

Bob must implement the code to make both tests pass. He does so by using a

StringTokenizer in the stringToCollection method, as follows:

package util;

import java.util.Collection;

import java.util.ArrayList;

import java.util.StringTokenizer;

public class StringParser {

 public static Collection stringToCollection(String source){

 Collection result = new ArrayList();

 StringTokenizer st =

 new StringTokenizer(source, "{,},\"", false);

 while (st.hasMoreTokens()) {

 String s = st.nextToken();

 result.add(s);

 }

 return result;

 }

}

The StringTokenizer breaks a String in a number of tokens determined by the separators

listed in its creation. The code of the method then adds to the resulting Collection each of

the tokens. After running JUnit, Bob gets … green bar!

 102

Now that the String works with one element and with no elements, Bob thinks of one more

test for the normal usage. He creates a test for the creation of 3 elements. There is a rule of

thumb in Computer Science that states: “if it works with 3, it works with n” .

/** Tests if a string with 3 tokens is parsed correctly

 */

 public void testThreeElementsStringToCollection() {

 String s3 = "{a,b,c}";

 Collection c3 =

 (Collection) StringParser.stringToCollection(s3);

 Collection c3ok = new ArrayList();

 c3ok.add("a");

 c3ok.add("b");

 c3ok.add("c");

 assertEquals(c3, c3ok);

 }

Without touching the code of StringParser, Bob runs JUnit and it results in green bar! (we

will not show you the green bar image anymore, ok? It‟s basically the same window).

Bob is basically satisfied with the code for the normal behavior of StringParser. However,

now he must do the real testing – abnormal situations. He begins by testing if a simple

malformed String (missing “ }”) results in an exception thrown by StringParser. He

method is:

/** Tests if a malformed string is detected

 */

 public void testMalformedStringToCollection() {

 String bogus = "{";

 try {

 StringParser.stringToCollection(bogus);

 fail();

 } catch (MalformedStringException e) { /*ok*/

 }

In order that this test works, the class MalformedStringException must be created. It will

even be referred to in the poll program‟s Façade. Bob codes it right away, it is a simple class:

package util;

public class MalformedStringException extends Exception {

 public MalformedStringException(String message) {

 super(message);

 }

}

After updating the other methods so that MalformedStringException is thrown, Bob runs

JUnit, which produces the following result:

 103

Now he must update StringParser‟s code so that it throws MalformedStringException

when it finds malformed Strings. For this first case, he code resulted as follows (additions in

bold):

public static Collection stringToCollection(String source)

 throws MalformedStringException {

 if (!source.startsWith("{") || !source.endsWith("}"))

 throw new MalformedStringException(

 "Collection must be a comma-separated list enclosed in { }");

 Collection result = new ArrayList();

 StringTokenizer st =

new StringTokenizer(source, "{,},\"", false);

 while (st.hasMoreTokens()) {

 String s = st.nextToken();

 result.add(s);

 }

 return result;

 }

But a number of other malformed Strings exist, so Bob creates a test for each one of it, using

the same process: first he writes the test, runs it, and only then writes the simplest code just

enough to make the test pass. In the end, this is the method for the malformed Strings test:

 /** Tests if a number of malformed strings are detected

 */

 public void testMalformedStringToCollection() {

 String bogus[] = new String[9];

 bogus[0] = "{";

 bogus[1] = "}";

 bogus[2] = "}";

 bogus[3] = "{,}";

 bogus[4] = "{,,}";

 bogus[5] = "{player1,,player2}";

 bogus[6] = "{,player1}";

 bogus[7] = "{player1,}";

 bogus[8] = null;

 for(int i=0; i<9; i++) {

 try {

 StringParser.stringToCollection(bogus[i]);

 fail();

 } catch (MalformedStringException e) {} /*ok*/

 }

 }

 104

Below is the corresponding code that made all tests pass:

package util;

import java.util.Collection;

import java.util.ArrayList;

import java.util.StringTokenizer;

public class StringParser {

 /**

 * Creates an ArrayList from a String in the form of a

 * comma-separated list of names enclosed in { }

 */

 public static Collection stringToCollection(String source)

 throws MalformedStringException {

 String errorMessage =

 "Collection must be a comma-separated list enclosed in {}";

 if(source == null)

 throw new MalformedStringException(errorMessage);

 if (!source.startsWith("{") || !source.endsWith("}"))

 throw new MalformedStringException(errorMessage);

 Collection result = new ArrayList();

 StringTokenizer st =

new StringTokenizer(source, "{,},\"", false);

 int countCommas = 0;

 for (int i = 0; i < source.length(); i++)

 if (source.charAt(i) == ',')

 countCommas++;

 if (st.countTokens() > 0 && st.countTokens() <= countCommas)

 throw new MalformedStringException(errorMessage);

 else if ((st.countTokens() == 0) && !source.equals("{}"))

 throw new MalformedStringException(errorMessage);

 while (st.hasMoreTokens()) {

 String s = st.nextToken();

 if (s.equals(""))

 throw new MalformedStringException(errorMessage);

 else

 result.add(s);

 }

 return result;

 }

}

Now, Bob decides he has fully tested the stringToCollection method. He still has the other

method to test, collectionToString. By now, you should have already understood how the

approach works. We will refrain from repeating the exposition of the step-by-step actions Bob

took. Let‟s just skip to the final tests for collectionToString (they are also part of the

TestStringParser class):

/** Tests if a null Collection forms the right String

 */

 public void testNullCollectionToString() {

 Collection c0 = null;

 105

 String s0 = "{}";

 String s0ok = StringParser.collectionToString(c0);

 assertEquals(s0, s0ok);

 }

 /** Tests if an empty Collection forms the right String

 */

 public void testEmptyCollectionToString() {

 Collection c0 = new ArrayList();

 String s0 = "{}";

 String s0ok = StringParser.collectionToString(c0);

 assertEquals(s0, s0ok);

 }

 /** Tests if a Collection with one element forms the right String

 */

 public void testOneElementCollectionToString() {

 Collection c1 = new ArrayList();

 c1.add("player1");

 String s1 = StringParser.collectionToString(c1);

 String s1ok = "{player1}";

 assertEquals(s1, s1ok);

 }

 /** Tests if a Collection with three elements forms the right String

 */

 public void testThreeElementsCollectionToString() {

 Collection c3 = new ArrayList();

 c3.add("a");

 c3.add("b");

 c3.add("c");

 String s3 = StringParser.collectionToString(c3);

 String s3ok = "{a,b,c}";

 assertEquals(s3, s3ok);

 }

Notice that there are fewer tests this time, because there are no malformed syntaxes to cope

with. Finally, this is Bob‟s code for the collectionToString method, which is included in

the StringParser:

/**

 * Creates a String representing a Collection of names

 */

 public static String collectionToString(Collection source) {

 if (source == null)

 return "{}";

 Iterator it = source.iterator();

 StringBuffer result = new StringBuffer("{");

 while (it.hasNext()) {

 Object obj = (Object) it.next();

 result.append(obj.toString());

 if (it.hasNext())

 result.append(",");

 }

 result.append("}");

 return result.toString();

 }

 106

Bob has decided that, if a null Collection is received, instead of a null String, the String

representing an empty Collection is returned (“{}”).

In the end of all this process, Bob can finally rest (but only for a brief moment, because he has

the full poll program to implement). This was JUnit‟s result for his last test run (green bar! 8

tests passing!):

 107

Appendix III – Teaching ATDD with EasyAccept

In this appendix, we will tell our experience with EasyAccept and ATDD in teaching software

design to Computer Science undergraduate students. We have been using EasyAccept

successfully for more than four years for this purpose. We use the ATDD approach with

EasyAccept in software design courses, where we teach object-oriented software design.

In our undergraduate curriculum, a software design course is given before the one on software

analysis, which we think requires more maturity. Another point is that analysis can be grasped

more easily when students first learn to use the analysis artifacts produced by others before

learning to create these artifacts themselves.

In this course, we assign the students with a typical undergraduate project to be completed in

one semester, along with lectures and quizzes to evaluate student‟s knowledge. Projects are

undertaken by groups of two to three students, at most, and all groups are assigned the same

project in a given semester.

In the past, this project assignment was done without executable analysis artifacts. Students

were given textual descriptions of what they should do, along with a few diagrams like a

conceptual model.

The results have never been good. There were always so many differences among the projects

that we could hardly tell students were assigned the same project. Students (and people, in

general, even experienced developers) read a project assignment and think they know what

the client wants, but frequently they do not. The problem is that there is not an executable

means of verifying the correctness of the projects. Projects may even have few bugs (when

students do a good work in testing), but how do we guarantee they do what the client

expected?

We then decided to give students executable analysis artifacts as the requirements for the

projects. The first time we did this, four years ago, we gave students acceptance tests in a

script language we defined and they had to code the script interpreter. After the first semester,

we realized it was convenient to provide students with the script interpreter itself, so that they

could focus on writing the working code for the project. That‟s when EasyAccept was

created. It is basically a general purpose script interpreter for scripted acceptance tests.

Unsurprisingly, since then, every semester we receive student projects with close to perfect

software correctness, compared to lousy results in the preceding semesters.

We even made a comparison to assess the gain in correctness. We took projects from

semesters before EasyAccept (in which students were not given acceptance tests), wrote

acceptance tests for them based on the user stories descriptions, and ran these tests on a

sample of the projects. A Façade had to be created for each project, but no internal code was

changed.

 108

This group of projects was compared with a sample of student projects taken from semesters

after EasyAccept (in which students were given the acceptance tests). This time, as the

students had to code their own Façade to begin with, it was just a matter of running the tests.

The two groups were not assigned the same project (we assign a new project every semester),

but students were taken from the same course in the curriculum and had equivalent skills; the

projects had also equivalent complexity, and the course was taught by the same teacher.

In Table III.1, below, we see the results for the first group of projects, taken from a class

which had the assignment of building a framework for cell phone games. Project correctness

was measured as the percentage of user stories that were completed successfully (without

errors when running the acceptance tests with EasyAccept).

Acceptance
Test Set #

Project 1 Project 2 Project 3 Project 4

“Hungry”
Game

US 1 failed ok failed failed

US 2 ok ok ok ok

US 3 ok ok ok ok

US 4 ok ok ok ok

US 5 ok ok ok ok

US 6 ok ok ok ok

US 7 ok failed ok ok

“Gula”
Game

US 8 failed ok failed failed

US 9 ok ok ok ok

US 10 failed ok ok ok

US 11 failed ok ok ok

US 12 ok ok ok ok

US 13 ok ok ok ok

US 14 ok ok ok ok

US 15 ok ok ok ok

US 16 ok ok failed ok

“Magic”
Game

US 17 failed ok failed failed

US 18 ok ok ok failed

US 19 ok ok ok failed

US 20 ok ok ok ok

US 21 ok ok ok ok

US 22 failed failed failed failed

US 23 failed ok ok failed

US 24 failed failed ok failed

US 25 failed ok ok ok

US 26 ok ok ok ok

US 27 failed ok failed failed

US 28 failed failed failed failed

 %acceptance 60.71 85.71 75 64.28

Table III.1 – Correctness of sample projects before using EasyAccept

In table III.2, you can find the results for sample projects taken from a class which was

assigned a direct mail project and received the acceptance tests in the beginning.

 109

User
story

Acceptance test
Description

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Letter
generation

for a
single
client

1 - Setup testing: do we
have the expected

database?

ok ok ok ok failed ok ok ok ok ok ok

2 - Setup testing: do we
have the expected

templates?

ok ok ok ok ok ok ok ok ok ok ok

3 - Sending mail with 1
client and no tags

ok ok ok ok failed ok ok ok ok ok ok

4 - Database errors testing ok ok ok ok ok ok ok ok ok ok ok

5 - Template errors testing ok ok ok ok ok ok ok ok ok ok ok

6 - Tag errors testing ok ok ok ok ok ok ok ok ok ok ok

7 - Sending errors testing ok ok ok ok ok ok ok ok ok ok ok

Mail
sending to

a single
client

via mail
system

8 - Setup testing: do we
have the expected

database?

ok ok ok ok ok ok ok ok ok ok ok

9 - Setup testing: do we
have the expected mail

systems?

ok ok ok ok ok ok ok ok ok ok ok

10 - Mail sending to a file ok ok ok ok ok failed ok ok ok ok ok

11 - Mail sending through
a mail system

ok ok ok ok ok failed ok ok ok ok ok

Database
record

keeping

12 - Creation and reading
testing

ok ok ok ok ok ok ok ok ok ok ok

13 - Alteration testing ok ok ok ok ok ok ok ok ok ok ok

14 - Removal testing ok ok ok ok ok ok ok ok ok ok ok

15 - Persistence testing ok ok ok ok ok ok ok ok ok ok ok

Selection
according
to criteria

16 - Selection and sending
testing

ok ok ok ok ok ok ok ok ok ok ok

 %acceptance 100 100 100 100 87.5 87.5 100 100 100 100 100

Table III.2 – Correctness of sample projects after using EasyAccept

The gain in correctness is evident. Theoretically, there should not even be failing tests in the

projects for the second group. We are still trying to find why some student groups every now

and then insist on delivering incomplete projects. Real people wouldn‟t do that, right?

In the end of a semester, we are pleased to congratulate students for their compliance with the

project‟s requirements. In addition to making this important point for students, we are also

happy to have them introduced to good software development practices from which they will

benefit during their career. We are also relieved because the process of correcting and grading

the projects is so much easier – it basically takes us to run EasyAccept for each projects and

check if tests pass.

However, the downside is that you must put a little effort in the beginning of the semester, in

order to create the tests. Let‟s see some hints on how to do this easily.

 110

How to create the tests

Once you decide to use acceptance tests in your project assignments, the first time around you

will have to create the tests yourself, based on what you‟ve learned from this text. With time,

as classes come and go, the job can be easied up considerably because you can get other

people to write the tests for you. The easiest way is interacting with the software analysis

teacher and students from late semesters. Get the software analysis teacher to read this text

and teach some testing techniques and patterns to his students. This completes the cycle on

ATDD teaching, because they will experience how the “other side” works. As these students

have already had experience with ATDD and EasyAccept in your classes, they will certainly

be able to write tests. They could be assigned to write tests for the project that will be used in

the next semester‟s software design course.

No matter how the tests are created, make sure to review them the first time around, and

follow the recommendations below.

Leave some typos and doubtful points in the scripts on purpose. This will force students to

contact you for clarification, as they can‟t change the tests. It also serves as a feedback for

you. If in a month‟s time no one has contacted you yet, it is unlikely that any student is doing

progress in the project.

In addition to the test cases you provide the students with, warn them that you have secret

tests that will be used for grading. That way, students will be forced to think beyond the tests

they receive. Furthermore, they will always have to code the general case out of the examples

the test suggests, not just the code that makes the test pass.

How to assign the projects

Once you have the acceptance tests, explain the project to your students in the first class. You

should give them the tests, the user stories, and maybe some other artifacts that will help them

understand the project, just for reference. We give them a conceptual model and a glossary for

this purpose.

A nice thing that we always do is to code the first user story in the first few classes with the

students, explaining how the ATDD technique works. Make sure to include in this first user

story a point where you can show a unit test being written, too. During the exposition, you

should also explain patterns like Client Assertion, which students will need to apply.

Remember that you are the student‟s client, so be available to clarify their project doubts

during classes or via email.

 111

How to grade students

Always use your own test files when testing student‟s projects, because they may cheat by

including modified tests in the project. In order to avoid cheating and plagiarism, we also

recommend applying MOSS (Measure Of Software Similarity), an online service provided by

Stanford University (http://moss.stanford.edu).

We use software correctness (measured as the percentage of acceptance tests that pass) as the

paramount weight in the student‟s project grade. We support the decision by telling students

that, if they can deliver software that does what the clients want correctly, they have

accomplished the single most important goal of software development. A few semesters ago

we used to grant 70% of the grade for software correctness, but now we have reduced it to

50%. This was decided mainly because some students wouldn‟t do enough hard work to

improve software code and design once they had gone through all the tests.

You can divide the remainder of the grade between design, code, documentation, and any

other aspect you want to evaluate. Code is particularly difficult to grade because it involves

subjective elements to some extent, but you can systematize it by using some more objective

criteria like code smells (bad variable names, magic numbers, code repetition, deep nesting of

loops, cascading if clauses, usage of instanceof, etc.). Evaluating for code repetition can be

automated if you use MOSS, because it also compares code inside the same project.

http://moss.stanford.edu/

 112

6 – Conclusão

Esta dissertação representou os resultados de um trabalho investigativo sobre ATDD, que

resultou na escrita de um texto introdutório sobre a metodologia usando a ferramenta

EasyAccept. A seguir, apresentamos algumas conclusões a que chegamos com esse trabalho,

suas contribuições e finalmente uma discussão sobre os trabalhos futuros a partir do que já foi

realizado.

6.1 – Conclusões

Ao realizar esse trabalho, chegamos a algumas conclusões paralelas interessantes relacionadas

ao uso de artefatos de análise executável e ao futuro da Engenharia de Software.

A primeira delas refere-se ao retorno da dicotomia analista-programador ao desenvolvimento

de software. Antigamente, havia nos projetos de desenvolvimento uma clara distinção entre o

trabalho de um analista – profissional responsável pela análise, que fazia a interface com o

cliente – e o de um programador – profissional com conhecimento técnico, que efetivamente

trabalhava escrevendo código a maior parte do tempo. Ao longo do tempo, à medida que se

percebia que problemas de comunicação estavam minando projetos – programas eram

entregues incorretos, não correspondiam ao que o cliente havia solicitado – foi-se misturando

cada vez mais as tarefas do analista e do programador, de forma a minimizar as transferências

de informação entre profissionais diferentes. Aos poucos, passou-se a não haver mais uma

clara distinção entre as tarefas dos dois. O profissional misto passou a ser chamado

genericamente de “desenvolvedor”, com acúmulo de funções e exigências de habilidades

diversas (tanto de comunicação, quanto técnicas).

O uso de artefatos de análise executável, no entanto, torna desnecessária essa mistura de

tarefas, uma vez que reduz os problemas de comunicação entre as várias transferências de

informação: cliente-analista, analista-programador e programadores entre si. A razão é que os

testes de aceitação são uma maneira não ambígua de representar os requisitos, e estão

sincronizados com as eventuais mudanças de requisito que o cliente possa solicitar. Assim,

faz mais sentido voltar ao estado inicial do desenvolvimento de software, em que o cliente

conversa com alguém especialmente treinado para lidar com pessoas (o analista), e o

profissional com mais habilidade técnica (o programador) tem menos contato com o cliente.

A segunda conclusão, que deriva da primeira, é a observação de que artefatos executáveis

parecem ser a solução definitiva para os problemas de qualidade da terceirização

(outsourcing) de desenvolvimento de software. Quando uma empresa precisa terceirizar

desenvolvimento de software e não pode garantir a qualidade do resultado dessa terceirização,

basta que ela tenha analistas em sua sede treinados em escrever testes de aceitação. A idéia é

que os analistas escrevam os testes e repassem-nos para a empresa subcontratada, cujo

trabalho se resumirá a produzir o código que faz os testes passarem. Os testes garantem se não

boa parte da qualidade do código, pelo menos a corretude do software que será produzido.

 113

6.2 – Contribuições

Acreditamos que o texto dessa dissertação será bastante útil para os leitores em potencial. Em

particular, acreditamos que a dissertação terá grande valia para neófitos em desenvolvimento

de software, como estudantes de graduação em Ciência da Computação, uma vez que ele

inclui exemplos passo a passo com código Java que podem ser usados de forma

complementar em um curso de projeto de software ou até mesmo de programação. Também

parece ser de fácil compreensão – pelo menos até onde as listagens de código não estão

envolvidas – para pessoas sem conhecimento técnico, o que o torna potencialmente válido

como texto introdutório para clientes que participarão de projetos de desenvolvimento de

software.

O levantamento de padrões e práticas foi um primeiro passo na direção de algo que esperamos

se torne bem maior – um catálogo extenso de conhecimento legitimado e comprovado pelo

uso todos os usuários da metodologia. O exemplo de aplicação da metodologia dentro de um

processo XP serve como um guia rápido que pode ser usado para manter o foco dos

participantes de um projeto de desenvolvimento de software no que cada um deve fazer.

6.3 – Limitações

Seguem algumas considerações sobre o escopo e as limitações deste trabalho.

A metodologia ATDD tem aplicabilidade associada ao contexto de processos ágeis de

desenvolvimento [Beck99], o que exige uma filosofia baseada no cliente e práticas centradas

em testes e produção rápida de funcionalidade para feedbacks freqüentes. Não temos

experiência da aplicação da metodologia em conjunto com processos “pesados”, apesar de

acreditarmos que a aplicabilidade do ATDD não está restrita a processos ágeis.

Além disso, a experiência que temos com a metodologia envolve apenas projetos de pequeno

porte, com equipes envolvendo não mais que 10 pessoas, em ambiente universitário (ou seja,

equipes incluem estudantes de Ciência da Computação e professores universitários, além de

desenvolvedores profissionais). Isso é refletido no fato de o texto ser introdutório, com

exemplos tirados de projetos de software simples.

Finalmente, os exemplos de teste de aceitação usados na dissertação estão escritos no formato

adotado pelo EasyAccept e os exemplos de código utilizam a linguagem de programação

Java. Apesar de o EasyAccept ser facilmente modificável para funcionar com outras

linguagens, decidimos usar exemplos em Java por ser esta linguagem mais amplamente

adotada em ambiente universitário, de onde vem um importante público-alvo para o livro.

6.4 – Trabalhos Futuros

A escrita de um texto introdutório sobre a metodologia ATDD usando EasyAccept dá um

apoio inicial na evolução da ferramenta e da metodologia. Entretanto, há muito ainda o que

fazer para que se possa lucrar ainda mais com a utilização de ambas.

 114

Uma primeira frente de trabalho envolve levantar mais padrões e práticas para a metodologia

ATDD, e desenvolver e refinar os já levantados. Os padrões que estão incluídos nessa

dissertação foram discutidos no EuroPLoP 2007, uma conferência específica entre

pesquisadores de padrões, e geraram um interessante debate que levou à conclusão de que há

ainda muito mais padrões a serem escritos. Repositórios de padrões e práticas têm natureza

comunitária e colaborativa, de forma que estes não são validados apenas pelo trabalho isolado

de uma pessoa ou grupo. Somente através uso repetido e legitimado por toda uma

comunidade podem padrões e práticas ser credenciados como tal. Assim, um trabalho

interessante seria envolver-se com as comunidades de padrões, com os grupos que utilizam a

metodologia, participar das demais conferências com submissão de artigos, etc., para ajudar a

aprimorar o estado da arte da área.

A segunda frente envolve evoluir a ferramenta EasyAccept em si. Idéias incluem a criação de

uma IDE gráfica, além de novas funcionalidades para tornar o uso da ferramenta ainda mais

simples. Facilidade de uso é talvez a principal característica que se quer obter com a evolução

do EasyAccept, então tudo que puder facilitar a vida do cliente – revisores e potenciais

criadores de testes – deve ser incorporado à ferramenta. As idéias sobre novas funcionalidades

para o EasyAccept podem ser encontradas na lista de discussão sobre a evolução da

ferramenta, cuja URL é http://groups.google.com/group/evolution-of-easyaccept.

http://groups.google.com/group/evolution-of-easyaccept

 115

7 – Referências

[Abath] Abath Neto, O., Sauvé, J., Dantas, A. Patterns for Scripted Acceptance Test Driven

Development. Proceedings of EuroPLoP‟07, 2007

[Alex] Alexander, C., Ishikawa, S., Silverstein, M. A Pattern Language: Town, Buildings,

Construction. Oxford University Press, 1977

[Andersson] Andersson, J., Bache, G., Sutton, P. XP with Acceptance Test-Driven

Development: A Rewrite Project for a Resouce Optimization System. Proceedings of the 4th

International Conference on Extreme Programming, 2003

[Beck98] Beck, K., Gamma, E. “Test Infected: Programmers Love Writing Tests.” Java

Report 3(7): pgs. 37-50, julho 1998

[Beck99] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley,

1999

[Beck03] Beck, K. Test Driven Development: By Example. Addison-Wesley, 2003

[Crispin] Crispin, L., House, T. Testing in the Fast Lane: Automating Acceptance Testing in

an Extreme Programming Environment. XP Universe Conference, 2001.

[Cunningham] Cunningham, W. “Fit: Framework for Integrated Test.” http://fit.c2.com

[EasyAccept] “EasyAccept homepage” http://easyaccept.org

[Exactor] “Exactor homepage.” http://exactor.sourceforge.net

[Finst] Finsterwalder, M. Automating Acceptance Tests for GUI Applications in an Extreme

Programming Environment. Proceedings of the 2nd International Conference on Extreme

Programming, 2001

[Gamma] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995

[Jameleon] “Jameleon – An Automated Testing Tool” http://jameleon.sourceforge.net

[Martin] Martin, R., Martin, C. “Fitnesse homepage” http://fitnesse.org

[Miller] Miller, R. JAccept Used for Acceptance Testing.

http://www.roymiller.com/papers/acceptanceTesting.htm

[Mugridge05] Mugridge, R., Cunningham, W. FiT for Developing Software: Framework for

Integrated Tests. Prentice-Hall, 2005

http://fit.c2.com/
http://easyaccept.org/
http://exactor.sourceforge.net/
http://jameleon.sourceforge.net/
http://fitnesse.org/
http://www.roymiller.com/papers/acceptanceTesting.htm

 116

[Reppert] Reppert, T. Don’t Just Break Software, Make Software. Better Software, 2004

http://industriallogic.com/papers/storytest.pdf

[Sauve05] Sauvé, J. P., Abath Neto, O., Cirne, W. Assessing the Benefits of Executable

Analysis Artifacts on Improving Software Correctness. Submitted for OOPSLA‟05

[Sauve06] Sauvé, J. P., Abath Neto, O., Cirne, W. EasyAccept: A Tool to Easily Create, Run

and Drive Development with Acceptance Tests. Worskhop on Automation of Software Test,

ICSE‟06, 2006

[Text] “texttest homepage.” http://sourceforge.net/projects/texttest

[ZiBreve] Mugridge, R. “ZiBreve homepage” htttp://zibreve.com

http://industriallogic.com/papers/storytest.pdf
http://sourceforge.net/projects/texttest

